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Preface

Time Series Lab - Score Edition is a software program to analyze, model, and forecast time
series. The software allows users to specify a wide range of dynamic components and proba-
bility distributions to extract the maximum amount of signal from the time series data. More
information can be found on https://timeserieslab.com. The software is developed by
R. Lit (Nlitn) in cooperation with Prof. S.J. Koopman and Prof. A.C. Harvey. Copyright c©
2019-2020 Nlitn. Time Series Lab - Score Edition should be cited as:

Lit, R., S.J. Koopman, and A.C. Harvey (2019-2020), Time Series Lab - Score Edition:
https://timeserieslab.com

Credits: Icons - Flaticon

Feedback: we appreciate your feedback on the program. Please let us know by sending
an email to feedback@timeserieslab.com.

Bugs: found a bug? Please let us know by sending an email to bugs@timeserieslab.com.
Please describe the exact steps you took to reach to the point where you found the bug.

Contact: for questions about Time Series Lab - Score Edition or inquiries about customized
version of the program, please send an email to info@timeserieslab.com.
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Chapter 1

Getting started

If you’re interested in time series analysis and forecasting, you are at the right place. The Time
Series Lab - Score Edition (TSL - SE ) software package makes time series analysis available
to anyone with a basic knowledge of statistics. The program is written in such a way that
results can be obtained quickly. However, many advanced options are available for the time
series experts among us.

Although not strictly required, we advise you to read Appendix A – C for background and
details of time series methodology. Appendix A illustrates the strength of dynamic models and
why dynamic models are often better in forecasting than static models (which are constant
over time). The algorithms of TSL - SE are based on the score-driven methodology, see Creal
et al. (2013) and Harvey (2013). Appendix B discusses the mathematical framework of score-
driven models. Knowledge of the methodology is not required to use TSL - SE but is provided
to the interested reader. Appendix C shows that well-known models like ARMA and GARCH
models are submodels of score-driven models.

There are a few key things to know about TSL - SE before you start. First, TSL - SE
operates using a number of different steps (1 – 5). Each step covers a different part of the
modelling process. Before you can access certain steps, information must be provided to the
program. This can be, for example, the loading of data or the selection of the dependent
variable. The program will warn you if information is missing and guides you to the part of
the program where the information is missing. We will discuss each step of the modelling
process and use example data sets to illustrate the program’s functionalities.

Throughout this manual, alert buttons like the one on the left will provide you
with important information about TSL - SE .

Furthermore, throughout the software, info buttons like this blue one are posi-
tioned where additional information might be helpful. The info button displays its
text by hoovering the mouse over it.
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TSL - SE uses its algorithms to extract time-varying components from the data. In its
simplest form this is just a Random walk but it can be much more elaborate with combinations
of Autoregressive components, Seasonal component, and Explanatory variables. We will see
examples of time-varying components throughout this manual.

1.1 Installing and starting TSL - SE
You can download the TSL - SE software for free from https://timeserieslab.com. Cur-
rently only the Windows platform is supported. TSL - SE can be started by double-clicking
the icon on the desktop or by clicking the Windows Start button and selecting TSL - SE from
the list of installed programs.

1.2 Selecting models
After starting the software, you see the screen as depicted in Figure 1.1. The Model category
menu shows several pre-specified models that come with TSL - SE . The pre-specified models
help the user to set up their model and get results quickly.

Important: Selecting the Score-driven models option in the Model category menu
allows the user to do all model settings manually and uncover the full potential
of score-driven models. The pre-specified models skip certain parts of the program.

The above information is also communicated to you via the orange info button on the front
page of the program (see also Figure 1.1). It tells you that:

TSL - SE allows you to analyze and forecast a wide range of linear and non-linear time series models.
Score-driven models are so versatile that well-known models like ARMA and GARCH models, are
subclasses of score-driven models.

In the ’Model category’ and ’Model type’ section, you find pre-specified models that are submodels
of score-driven models. If you want to use the full potential of score-driven models and specify the
model components yourself, please select the ’Score-driven models’ option in the ’Model category’ list.

After selections are made, press the ’Get started’ button and you will be taken to the next
step of the modelling process.

You can always return to this page by clicking File > Front page in the top left corner.

It should be emphasized that whichever choice you make, your model of choice is always a
score-driven model.

The pre-specified Model categories are ARMA, GARCH, ARMA-GARCH, Duration, and
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Figure 1.1
Front page of TSL - SE with pre-specified GARCH model

Count models with in each category several Model types. For example, if we are interested
in time-varying volatility in stock returns and we wish to model our data with a GARCH(2,1)
model, we choose GARCH models from the Model category menu, GARCH from the Model
type menu, and set p = 2, q = 1 in the spin boxes, see Figure 1.2 for a screen shot of the
selections.

Figure 1.2
Time Series Lab - Score Edition - GARCH(2,1) selection

Time Series Lab - Score Edi-
tion front page with pre-specified
model menus and GARCH(2,1)
volatility model selected.

The Get started button takes us to the next step of the modelling process. The selections
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made determine which step will be next. For example, if no data set is loaded yet, clicking
the Get started button leads us to the load data page, see also Chapter 3. We can always
return to the front page by clicking File > Front page in the menu bar at the top of the page.

1.3 A five step modelling procedure
The modelling process in TSL - SE consists of a five step procedure: Load data, Model setup,
Estimation, Graphics, and Forecasting. Green and red arrow buttons let you go back and
forth in the program one step at a time. In some cases, the next step cannot be displayed

because the program is missing information, for example the selection
of the dependent variable in step one. Steps four and five can only be
reached after the model is estimated. If a pre-specified model is selected

on the front page, the program skips step two because all model settings are already specified
by the program. However, if needed, step two can always be reached by going to the main
page and selecting step two from there, see also Chapter 2.



Chapter 2

Main menu and model output

2.1 Main menu
The main page of TSL - SE consists of five buttons from which you can go directly
to the modelling step of your choice. Vice versa, from each of the five modelling
steps, the user can always go to the main page by clicking the home button as

shown here on the left. The main page with example modelling output is shown in Figure 2.1.
The right area of the main page is dedicated to text output that will be printed during the
modelling process. The text output area works as a basic text editor in which you can type
and remove text. Press Ctrl+z or Ctrl+y to undo or redo the changes you made in the editor.
Right-mouse clicking the text area opens a menu with additional options. During estimation
of the model, the program returns to the main page where intermediate estimation results
will be shown. The output of the text editor can be saved by clicking File > Save text output
from the menu bar at the top of the program, see Section 2.2 for more details. The Save
text output option can also be found under the right-mouse click menu.

2.2 Menu bar
The majority of the program options can be found in the five modelling steps. Some func-
tionalities are however in the menu bar at the top of the page. We briefly discuss the menu
bar options.

File menu
Front page: from anywhere in the program, the user can always go back to the front page,
where the pre-specified models can be selected.
Main menu: from anywhere in the program, the user can always go back to the main menu.
Load data: shortcut to open the load data window from anywhere in the program.
Save text output: the text output as printed on the main menu output page can be saved in
.txt format via this option.
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Figure 2.1
Mainpage of TSL - SE with buttons to the five modelling steps

Save components: after a model is successfully estimated, select this option to save all ex-
tracted time series signal into an Excel or .csv file for further processing.
Exit: exits the program, unsaved work is lost.

Info menu
Check for updates: the program checks whether updates are available on start up. Users can
do this manually via this option. If an update is available, the program asks whether it should
be updated to the newest version.
Changelog : overview of TSL - SE version history with all (semi-)important changes to the
program. This can be anything from bug fixes to new features.
About Time Series Lab: some background info on TSL - SE .
Feedback : ways to get in contact with the Time Series Lab team.
Documentation: the document you are currently reading can be opened via TSL - SE .
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Step 1: Loading and preparing data

The first step in any time series analysis is the inspection and preparation of
data. From the main page, clicking the button on the left brings you to the data
inspection and preparation page as displayed in Figure 3.1. The Nile data set1 that

comes bundled with the installation file of TSL - SE is used as illustration.

3.1 Database
The data set is loaded and selected from the file system by pressing the Load data button
(below the Main menu button).

Important: The data set should be in column format with headers. The format
of the data should be *.xls(x), or *.csv, *.txt with comma’s as field separation.
The program does not sort the data which means that the data should be in the

correct time series order before loading it into the program.

After loading the data, the headers of the data columns are displayed in the Database section
at the top left of the page. Clicking on a header name plots the data in the plot area at the
bottom of the page. As shown in 3.1, the Nile data is currently highlighted and (automati-
cally) plotted.

3.2 Data selection
The highlighted variable Nile also appears in the Select dependent variable pull down menu.
This is the so-called y-variable of the time series equation and it is the time series variable
of interest, i.e. the time series variable you want to model, analyze, and forecast. The

1The Nile data set consists of a series of readings of the annual flow volume of the river Nile at the city
of Aswan from 1871 to 1970.
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Figure 3.1
Data inspection and preparation page

dependent variable needs to be specified because without it, the software cannot estimate a
model. Optionally, a time series axis can be specified. The program’s algorithm tries to auto
detect the time axis specification (e.g. annual data, daily data) from the first column of the
data set. In the case of the Nile data illustration in Figure 3.1, it finds an annual time axis
specification. If the auto detection fails, the program selects the Index axis option which is
just a number for each observation, 1, 2, 3, . . ..

You can specify the time axis manually as well via the User specified option or the Select
time axis option. The User specified option, opens a new window in which the user can
specify the date and time stamp of the first observation and the interval and frequency of the
time series. The newly specified time axis shows up in the plot after pressing confirm (and
exit). The Select time axis option allows the user to select the time axis from the loaded
database. If the time axis format is not automatically found by the program the user can
specify this via the Format input field. The (technical) text behind the info button tells us:
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Specify date format codes according to the 1989 C-standard convention, e.g.

2020-01-27: %Y-%m-%d
2020(12): %Y(%m)
2020/01/27 09:51:43: %Y/%m/%d %H:%M:%S

Specify ‘Auto’ for auto detection of the date format.

Note that a time axis is not strictly necessary for the program to run and an Index axis will
always do.

3.3 Data transformation
If needed, you can transform the data before modelling. For example if the time series con-
sists of values of the Dow Jones Index, a series of percentage returns can be obtained by
selecting percentage change from the Data transformation pull down menu followed by click-
ing the Apply transformation button. Note that the (original) variable before transformation
should be highlighted before applying the transformation to tell the program which variable
to transform. An example is given in Figure 3.2 where the Nile data is transformed by taking
logs. The newly transformed log variable (Nile log) is added to the variables in the Database
section and is automatically highlighted and plotted after the transformation. Transforma-
tions can be combined by applying transformations to already transformed variables. Newly
created transformed variables can be removed from the database by right mouse clicking on
it and selecting the Delete from database option. For the transformations: Lag operator,
Difference, and Scaling, the program needs extra user input. Depending on the selection, spin
boxes under Transformation settings become operable.

Add lag:
Lagged variables can be added to the model as well. Often these are explanatory variables,
e.g. Xt−1. Lagging a time series means shifting it in time. The number of periods shifted
can be controlled by the Add lag spin box. Note the text behind the information buttons that
says:

Please note that values > 0 are lags and values < 0 are leads

Differencing:
A non-stationary time series2 can be made stationary by differencing. For example, if yt

2A stationary time series is one whose statistical properties such as mean and variance are constant over
time.
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denotes the value of the time series at period t, then the first difference of yt at period t is
equal to yt− yt−1, that is, we subtract the previous observation from the current observation.
TSL - SE accommodates for this procedure since differencing is common practice among time
series researchers. However, the methodology of TSL - SE allows the user to explicitly model
non-stationary time series and differencing is not strictly necessary. Note the text behind the
information buttons that tells us:

Time Series Lab allows the user to explicitly model non-stationary components like trend and seasonal.
However, users might prefer to make the time series stationary by taking first / seasonal differences
before modelling.

Please note that missing values are added to the beginning of the sample to keep the time
series length equal to the original time series length before the difference operation.

Scaling:
Estimating a time series that consist of several or some small values, e.g. < 0.001, could
potentially lead to numerical instabilities. This can be solved by scaling the time series to
more manageable numbers.

3.4 Graphical inspection of the data
Plot type
Different types of time series plots can be activated by selecting one of the three options:
Time series, ACF, or PACF. The Time series option plots the selected time series. ACF and
PACF plots are advanced time series features and the explanation and ideas behind them are
out of the scope of this manual.

Plots
The plot area at the bottom of the window has more option than shown here. For example,
clicking the right mouse button on the plot area opens a menu with additional options. The
title of the plot, and the axes titles can be specified. Furthermore, characteristics of the
selected time series can be plotted in the top right corner of the graph. Finally, the buttons
in the bottom left corner of the plot area add additional functionality such as zooming in and
saving of the figure to a drive.

It is time to go to step 2 of the modelling process. Please press the Step 2 button in the
left bottom corner of your screen to go to the Model setup page.
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Figure 3.2
Data inspection and preparation page
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Step 2: Model setup

Step 2 of the software looks like Figure 4.1 and can be reached via the Main menu,
or via Step 1 or Step 3. Step 2 is the heart of the program and it is here where
important modelling decision are made. The selections on this page are based on

what we want to model and what our data characteristics are.

Important: Always ask yourself, “Which parameter needs to be time-varying?”
Is it the mean (location) of the distribution or the variance (scale). In TSL - SE it
is even possible to have both parameters time-varying.

4.1 Distribution
TSL - SE divides the probability distributions in two Distribution groups; Continuous dis-
tributions and Discrete distributions. The choice of distribution depends strongly on the
characteristics of the time series data. The Discrete distributions are the most specific of
the two groups because they can only be applied to discrete data, in contrast to Continuous
distributions who can handle both continuous and discrete data. Discrete data can only take
certain values and are often integers (whole numbers) but categorical data could also be re-
garded as discrete. Examples of discrete data are the number of goals scored by a football
team or the number of earthquakes in a certain region. Continuous data are not restricted to
certain values, and can occupy any value over a continuous range. Examples of continuous
data are stock returns or the lap times of an F1 car.

From the choice of distributions, the Gaussian is the most well-known but it is not the
only one. And here lies the power of TSL - SE : the program can handle so many different time
series because several probability distributions which each there own unique specifications are
part of TSL - SE . This makes the program extremely versatile and almost any time series can
be analyzed with the software.

We continue with the Nile data that we loaded in Step 1 and select the Gaussian distri-
bution for our data, see Figure 4.1.
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Figure 4.1
Probability distributions and model components

4.2 Select components for Location
The Nile data set is an example of data with a time-varying Location. We are not so much
interested in the spread of the Nile data around the Location but we want to know how the
level of the Nile behaves over time, for example, to forecast the level of the Nile in the next
year. For a symmetric distribution like the Gaussian distribution, the Location is equal to the
Mean. This is however not valid for all probability distributions. Additionally to Location,
TSL - SE also reports the Mean of the distribution in its text and graphical output.

Since we are interested in a time-varying location we untick the check box for Static loca-
tion so that all dynamic components become available. Notice how the dynamic components
are greyed out if we would tick the check box for Static location. For the Nile data illustration,
our selection for the Location parameter should like Figure 4.1

Important: Dynamic components each have unique characteristics and can be
combined to form complicated models that reveal hidden dynamics in the time
series.
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Intermezzo 1: Time-varying components

TSL - SE extracts a signal from the observed time series. The difference between the
observed time series and the signal is the noise, or the error. The methodology of
TSL - SE falls in the class of filters since it filters the time series from the noise to
obtain signal. It is the signal what we are interested in because it tells us something
about the next time period. In its simplest form, the signal at time t is equal to its
value in t− 1 plus some innovation. In mathematical form we have

αt = αt−1 + some innovation,

with αt being the signal for t = 1, . . . , T where T is the length of the time series. The
innovation part is what drives the signal over time. In the score-driven methodology
as explained in Appendix B, the scaled score of the predictive density is the driver. A
more advanced model can be constructed by combining components, for example

αt = µt + γt +Xtβ,

where µt is the level component, γt is the seasonal component, Xtβ are explanatory
variables, and where each of the components have their own score updating function.

We discuss each dynamic component and its characteristics.

Level
The Level component is a non-stationary component. In its simplest form it’s a Random walk
and can be extended with a drift parameter for direction. The Integrated random walk is a spe-
cial type of Random walk + drift component and often gives a smooth(er) pattern over time.
Although the Random walk is mathematically very simple, it proves very useful in many cases.

Autoregressive I and II
The Autoregressive component is a stationary component. Its order can be specified up to
lags of p = 31. TSL - SE always restricts the autoregressive parameters in such a way that
the autoregressive process stays within the stationary region.

Seasonal
The Seasonal component is a non-stationary component. Its seasonal length can be specified
up to s = 52. The s seasonal components sum up to zero for identification. This is enforced
by estimating the first s− 1 which, together with the zero sum restriction, identifies the last
one (more in this in Step 3 of Section 5). The number of seasons of the Seasonal component
depends on the data. Number of seasons should not be taken literally (although for quarterly
data it would be correct). It refers to the number of periods before the seasonal process
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repeats itself. The info button clarifies more and tells us:

Examples of seasonal specifications are:
Monthly data, s = 12.
Quarterly data, s = 4.
Daily data, when modelling the weekly pattern, s = 7.

Explanatory variables
Ticking the Explanatory variables box opens a new window where Explanatory variables can
be selected, see Figure 4.2. Notice that the Location and Scale component can have different
Explanatory variables. All variables, including the newly created variable Nile log from Step 1
(Section 3.1) are present and can be selected as Explanatory variables. The variable Nile log
is used as illustration and should not be included in the model.

Figure 4.2
TSL - SE- selection of Explanatory variables

Window where Explanatory vari-
ables can be selected for Loca-
tion and Scale separately. All
variables that were loaded and
newly transformed under Step 1
can be selected via the menu’s.

4.3 Select components for Scale
A time-varying scale is useful for time series models with time-varying volatility. Typical exam-
ples are GARCH models, see also Appendix C. For the description of the model components
for Scale see the Location section above. Scale has one extra component compared to Loca-
tion and that is the Leverage component. The Leverage effect is present in some time series
and captures asymmetric volatility. Time-varying volatility does not play a big role in the Nile
data set so we tick the check box for Static scale so that all dynamic components become
greyed out. For the Nile data illustration, our selection for the Scale parameter should like
Figure 4.1
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4.4 Model specification
At the bottom of our Step 2 screen, we find a summary of all our model decisions, see
also Figure 4.1. Our component selections and settings are directly translated to this model
summary. The number of probability distribution parameters differ per distribution. For
example the Poisson distribution only has one parameter (Location or Intensity) while the
Exp. Generalized Beta 2 distribution has four (Location, Scale, and two shape parameters).
Only Location and Scale parameter can be selected as time-varying.

4.5 Advanced settings
The Advanced settings button as shown here on the left gives us access to the
advanced model settings.

4.5.1 Score settings

For model stability reasons, Inverse Fisher scaling is the best option for the majority of models,
see Appendix B for more information about score scaling. Multiple lags of the score updating
function can be included in the model. The number of score lags can be set individually for
Location and Scale. For the majority of time series models, lag 1 will be sufficient. ARCH
models can be replicated by ticking the Set α = φ check box, see Appendix C for more
information.

4.5.2 Advanced settings location / scale

Dynamic components need to be initialized, i.e. they need to start from some specified value.
If more than one dynamic component is selected, a choice need to be made which component
should be initialized to avoid identification issues. The component that is initialized is free to
start from a value other than zero, based on the model setting Unconditional mean, Estimate,
or Mean of data sample.

The Unconditional mean option can only be selected for the stationary Autoregressive
components I and II for the simple reason that non-stationary components do not have an
Unconditional mean. The initialization can be estimated as well meaning the first element of
the dynamic component will be part of the hyper parameter vector that will be estimated in
Step 3, see Section 5. The last initialization method is to determine the initialization non-
parametrically from the data. For our Nile data example this translates to taking the average
of the first 10 observations of the time series. The sample range can be set to a different
number as well. A sample range of 1 means that the initialization component starts from the
first observation of the time series. All non-initialization components start from zero to avoid
identification issues.
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The link function creates, as the name suggest, a link between the signal and the model
components. A unit link means a one-to-one relationship between the signal and the model
components. The exponential link function is often used to ensure positivity. For example the
intensity of a Poisson distribution cannot be negative so modelling the intensity λt = exp(αt)
with αt being the signal at time t ensures that λt will never be negative. Another example is the
variance (or standard error) of a distribution which cannot be negative and is therefore often
modelled in combination with the exponential link function. For our Nile data illustration, we
use the model settings as shown in Figure 4.3.

It is time to go to Step 3 of the modelling process. Please press the Step 3 button in the
left bottom corner of your screen to go to the Estimation page.

Figure 4.3
Probability distributions and model components
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Step 3: Estimation

The estimation page of TSL - SE looks like Figure 5.2 and can be reached via the
Main menu, or via Step 2 or Step 4. On this page we specify estimation settings
based on the choices we made in Step 2.

5.1 Edit and fix parameter values
After we have left Step 2, the software collected all the hyper parameters that belong to our
probability distribution and model component choices and summarized them on the estimation
page. Before we click the green Estimate button below the Main menu button to estimate
the model, we have the option to fix parameters to a certain value. We do this by ticking the
Fix check box and by specifying the value that we want to fix the parameter to in the Value
entry boxes. If a Fix check box is not ticked, the corresponding value in the Value entry box
is taken as starting value for the optimization algorithm. The software checks the user input
in the Value entry boxes because some parameters are restricted to a certain range, see for
an example Figure 5.1.

Figure 5.1
TSL - SE warning for a non-stationary ARMA(4,1) process

An ARMA(4,1) model is speci-
fied in Step 2 of TSL - SE . The
program warns the user via the
In bounds column that the (user)
specified values lead to an ARMA
process that is non-stationary.
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Based on our Nile data model selections in Step 2, TSL - SE only needs to estimate two hyper
parameters. The first one is κ that influences the behavior of the updating of the Random
walk score-driven component and the second parameter is the constant scale (or variance) of
the Gaussian distribution, see also Figure 5.2.

Figure 5.2
Estimation page of TSL - SE

5.2 Estimation options
The hyper parameters can be estimated by Maximum Likelihood with the BFGS algorithm
or No estimation can be performed so that text and graphical output will be based on the
provided starting values. Maximizing the likelihood for the Nile data set is a routine affair.
Note however, that for more complicated models and the increase of the number of hyper
parameters, optimization can be complex. The info button next to the BFGS option tell us
that:
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The BFGS method falls in the category of quasi-Newton optimizers. This class of optimizers is
applicable to many optimization problems and is often used to maximize a likelihood function. Please
be aware that finding a global optimum is not guaranteed and trying different starting values increases
the chance of finding the global optimum.

We are not restricted to estimating the full sample in our data set. If needed, we can
restrict the estimation to a more narrow sample by setting the Estimation starts at t and
Estimation end at t entry boxes.

5.3 Additional output
After the successful estimation of a model, a (hyper) parameter report can be generated.
Clicking the Parameter report button brings us to the Main page where the parameter report
will be printed.

Important: The time it takes to generate the parameter report depends strongly
on the number of hyper parameters, the number of model components, and the
length of the time series. As a rule of thumb, the generation of a parameter report

takes at least the amount of time it takes to maximize the likelihood.

For our Nile data illustration, we use the model settings as shown in Figure 5.2. It is time to
go to Step 4 of the modelling process. Please click the green Estimate button below the Main
menu button to start the estimation process. During estimation we will see the Main page
with (intermediate) optimization results and once the optimization is finished we will be taken
to the Graphical output of Step 4. During and after the estimation of the Nile model we see
the text output in the next section.

5.4 Text output for Nile data series
Time Series Lab - Score Edition 1.20, Copyright c© 2019-2020 Nlitn

Session started at 2020-05-28 14:32

——————————————— MODEL DESCRIPTION ———————————————

Database
Model number: TSL001
The database used is: C:/TSL/data/NileData.xlsx
The selection sample is: 1 - 100 (N = 1, T = 100 with 0 missings)

Distribution
The dependent variable is Nile
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The selected distribution is the Gaussian distribution with parameters:

Parameters Symbol Time-varying Domain
Mean µ Yes +/- Inf
Scale σ No > 0

Parameter specification
µ = Level + Score(1)
σ = exp(cst)

Initialisation of location
Initialisation component: Level
Type of initialisation: Mean of data sample 1 - 10

—————————————— PARAMETER OPTIMIZATION ——————————————

Parameter starting values:

Parameter type Value Free/Fix
Location: RW κ 0.0200 Free
Log scale: constant 5.1262 Free

Start estimation
it0 f= -6.64702486
it10 f= -6.38052742

Strong convergence using numerical derivatives
Log-likelihood = -638.052742; T = 100

Optimized parameter values:

Parameter type Value Free/Fix
Location: RW κ 0.2483 Free
Log scale: constant 4.9616 Free

Estimation process completed in 0.0419 seconds

——————————————— STATE INFORMATION ———————————————

Component location Initial Time T
Mean 1132.6000 825.7410
Random walk 1132.6000 825.7410

Component scale Initial Time T
Standard deviation 142.8205 142.8205
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Step 4: Graphical output

Graphical inspection of the estimation results is an important step in the time
series modelling process. You are taken automatically to the Graphics page of
TSL - SE after the estimation process has finished. We can manually reach this

page by clicking the button on the left, located on the main page, after successful estimation.
The default graphical output for the Nile data illustration is displayed in Figure 6.1.

6.1 Selecting plot components
Plotting a component is very simple: it only requires ticking the check box corresponding to
the component you would like to see in the graph. Note that some components are greyed
out as they were not selected as part of the model.

A Composite signal, αt, is defined as the sum of components. In Intermezzo 1 this would be
the sum of the level, seasonal, and explanatory variables component, i.e. αt = µt + γt +Xtβ.
Note that a composite signal is the sum of model components before it enters the link
function so if we model, for example, time-varying volatility as

σt = exp(µt +Xtβ),

the composite signal would be µt + Xtβ. In our Nile data illustration we have the unique
situation that the mean, composite signal, and level are exactly equal due to the unit link
function and the level being the only component in the model. Despite our simple Random
walk model, which is often a very useful model, we see that the model nicely follows the data.
It, of course, lags the data by one period because a predictive filter is always based on data
up to time t− 1.

Pearson residuals are the standardized versions of the Residuals. For the Nile data illustra-
tion, the (time-varying) mean is subtracted from the Residuals and the remainder is divided
by the (constant) standard deviation of the Gaussian distribution.

The Autocorrelation function (ACF) plot of the Pearson residuals are shown in Figure 6.2
which shows that all dynamics in the time series are nicely captured by our model, although
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Figure 6.1
Default graphical output for Nile data and Random Walk

one spike at lag 10 is close to the confidence interval.

Figure 6.2
Autocorrelation plot of Nile data Pearson residuals

Autocorrelation plot of Nile data
Pearson residuals. The score-
driven Random walk model with
time-varying mean and constant
variance nicely captures the dy-
namics in the time series.
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6.2 Additional functionality

6.2.1 Clear all

The Clear all button is rigorous and clears everything from the graph including all subplots.
To have more refined control over the (sub)plots, right-mouse click on a subplot for more
options. Section 6.2.2 discusses subplots in more detail.

6.2.2 Add subplot

The graph area of TSL - SE can consist of a maximum of nine subplots. Subplots can be
convenient to graphically summarize model results in one single plot. To add a subplot to the
graph, click the Add subplot button. Notice that an empty subplot is added to the existing
graph which correspond to no check boxes being ticked.

Important: The components that are graphically represented in a subplot directly
correspond to the check boxes that are ticked. Clicking on a subplot activates the
current plot settings.

Notice that by clicking a subplot, a blue box appears shortly around the subplot as a sign that
the subplot is active.

Location and scale components can be represented in one subplot, just activate the subplot
of your choice and switch to the location or scale tab and tick the check boxes you need. The
info button to the right of the Add subplot button summarizes these findings and tells us:

Click on a subplot to activate it. Notice that by clicking on a subplot, the checkboxes in the top left
of the window change state based on the current selection of lines in the subplot.

If not all checkbox settings correspond with the lines in the subplot, switch the tabs to show
the rest of the selection.

6.2.3 Output tests

The residual Autocorrelation is graphically representation in the ACF plot. Autocorrelation can
also be tested by clicking the Output tests button. Durbin-Watson and Ljung-Box tests are
performed and output is printed to the Main page. Summary statistics of Residuals, Pearson
Residuals, and Score are printed as well.

6.2.4 Save all components

All model components can be save to disc for further processing or archival purposes. Af-
ter clicking the Save all components button, a window opens that allows you to save the
components to an *.xls(x) file or a comma separated *.csv file.
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Step 5: Forecasting

The forecasting page of TSL - SE with the Nile data as illustration looks like
Figure 7.1. The page can be reached via the Main menu or Step 4. Forecasting a
time series if often of great interest for users because being able to say “something”

about the future can be of great value. Forecasts need to be evaluated in some way. This is
usually done by loss functions which we will discuss later in this section.

7.1 Forecast settings
The spin box located under forecast settings, currently has a reading of 10 and determines the
number of time periods in the forecast window. The other spin box (with reading currently
99) determines how many time points the program needs to plot before the first forecast
period. Both spin boxes are interactive with the plot in the sense that changing them by
clicking the up and down buttons immediately affect the plot window. Numbers can also be
entered manually in the spin boxes followed by pressing the Enter key on the keyboard.

The current forecast selection can be cleared by clicking the Clear selection button and
forecasts can be saved in *.xls(x) or *.csv format by clicking the Save all forecasts button.

7.2 Plot area
Our Nile data forecasts are show in Figure 7.1 for 10 time periods in the future. We see that
the forecast is simply a straight line and no dynamics are present in the forecast. This is the
result of our model choices. We select a time-varying location composed of a score-driven
Random walk component but the forecast of a Random walk is just the value of the last
time period. Since we are out-of-sample with our forecasts (no observations are present), no
score-updating takes place and the result is a straight line into the future.

This is also the reason why the text box on the right of the graph only shows in-sample
loss functions because no observations are present after 1970 so losses cannot be calculated.
Later in this section we will see an example where we do have out-of-sample observations. The
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calculated loss functions are Root Mean Squared Error RMSE, Mean Absolute Error MAE,
and Mean Absolute Percentage Error MAPE. The last one is not available for all data and
distribution combinations. The fourth value in the text box is the LogLoss which is defined as
minus the average Log-likelihood value. Since many more loss functions are possible, forecasts
can be saved with the Save all forecasts button to allow the user to apply tailor-made forecast
themselves.

Figure 7.1
Estimation page of TSL - SE

7.3 Out-of-sample model fit
To give an idea of the additional options in TSL - SE if out-of-sample observations were
present we go back two steps in the modelling process (to step 3). On the estimation page
we change the Estimation ends at value from 100 to 90. We click the Estimate button and
after the estimation is finished we go to step 5, forecasting. Our screen now looks like the
one in Figure 7.2. Three things stand out.

First, radio buttons appear in the top left box of the program window. We can choose
between 1-step-ahead forecasting and multiple-step-ahead. The difference is if score-driven
updating is taken into account or not. If we have an observation at time t we can calculate
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the score and update our signal for time t + 1 accordingly. If we make multiple-step-ahead
forecasts we do not take the information from the observations into account and our forecasts
are again a straight line just as in Figure 7.1.

Two, with 1-step-ahead forecasting, dynamics are present in our forecast because after we
have made our forecast we are able to update our signal based on the information up to time
t.

Three, with the presence of observations we can now calculate out-of-sample forecast
errors. The text box on the right communicates out-of-sample losses via the same loss
functions as used to asses in-sample model fit. Comparing the out-of-sample losses for 1-
step-ahead and multiple-step-ahead forecasting shows that the loss is smaller for 1-step-ahead
forecasting which is not surprising since 1-step-ahead forecasting takes more information into
account, see also Figure 7.3 and Figure 7.4.

Figure 7.2
Estimation page of TSL - SE
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Figure 7.3
One-step-ahead forecast for Nile data

One-step-ahead forecast for Nile
data. The model is a Random
walk score-driven model and the
forecast sample is 10 year rang-
ing from 1961 to 1970.
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Figure 7.4
Multi-step-ahead forecast for Nile data

Multi-step-ahead forecast for
Nile data. The model is a
Random walk score-driven
model and the forecast sample
is 10 year ranging from 1961 to
1970.
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Case study

8.1 Estimating a dynamic Gompertz model
This case study is based on the work by Harvey and Kattuman (2020) and Harvey and Lit
(2020) and discusses the modelling of growth curves with an example in epidemiology and
concerns coronavirus. We fully replicate the modelling results and demonstrate the versatility
of TSL - SE . First a summary of the model

Intermezzo 2: dynamic growth curves model

The generalized logistic class of growth curves contains the logistic and Gompertz as
special cases. They lead to a model in which the increase, yt, at time t depends on the
cumulative total Yt. Specifically,

ln yt = ρ ln Yt−1 + δt + εt, ρ ≥ 1, t = 1, . . . , T, (8.1)

where yt = Yt−Yt−1, δt is a trend component, and εt is a serially independent Gaussian
disturbance with mean zero and constant variance, σ2

ε , that is εt ∼ NID(0, σ2
ε).

When yt is small, it may be necessary to adopt a discrete distribution, particularly
if some observations are zero. A good choice is the negative binomial which, when
parameterized in terms of a time-varying mean, ξt, and a fixed positive shape parameter,
υ, has probability mass function (PMF)

p(yt) = Γ(υ + yt)
yt! Γ(υ) ξyt

t (υ + ξt)−yt(1 + ξt/υ)−υ, yt = 0, 1, 2, . . . .

An exponential link function ensures that ξt remains positive and at the same time
yields an equation similar to (8.1):

ln ξt = ρ ln Yt−1 + δt, t = 2, ..., T, (8.2)
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The model in Intermezzo 2 with ρ set to one is the dynamic Gompertz model and can be fully
replicated in TSL - SE . We discuss all TSL - SE model settings step by step. The data used
in this case study is from March 11th 2020 up to, and including, May 6th was obtained from
the ECDC website. The data comes bundled with the TSL - SE installer and the data file is
called GermanyCovid.xlsx and is plotted in Figure A.1.

Front page
Select the Score-driven models option in the Model category menu and click Get started.

Step 1
Load the GermanyCovid.xlsx file located in the data folder of TSL - SE . Select the variable
DGerDeath in the Database field or from the pull down menu under Select dependent variable.

Step 2
Choose Discrete for the distribution group and Negative Binomial for the distribution. Make
sure Static intensity is un-ticked. Tick the Level check box and select the Random walk
+ slope component. Furthermore tick the Explanatory variables check box and select the
LGerDeaths 1 explanatory variable for intensity. This variable is ln Yt−1 in Intermezzo 2.
Make sure that the Autoregressive processes and the Seasonal are un-ticked.

Click the Advanced settings button and select the Estimate option under Type of initialisation.
Choose the Exponential link function.

Step 3
Fix the Log intensity: β LGerDeaths 1 parameter to 1.0 by ticking the Fix check box in front
of it and typing 1.0 in the Value field.
Click the green Estimate button.

Output
We should now see the graph in Figure A.2 on our screen and the following text output on
the main page.

Time Series Lab - Score Edition 1.20, Copyright c© 2019-2020 Nlitn

Session started at 2020-05-29 08:56

——————————————— MODEL DESCRIPTION ———————————————

Database
Model number: TSL001
The database used is: C:/TSL/data/GermanyCovid.xlsx
The selection sample is: 1 - 57 (N = 1, T = 57 with 0 missings)

Distribution



31 8.1. ESTIMATING A DYNAMIC GOMPERTZ MODEL

The dependent variable is DGerDeath
The selected distribution is the Negative Binomial distribution with parameters:

Parameters Symbol Time-varying Domain
Mean λ Yes > 0
Dispersion r No > 0
Parameter specification
λ = exp(Level + Xβ + Score(1))
r = constant

Explanatory variables
Explanatory variable for location is: LGerDeaths 1

Initialisation of intensity
Initialisation component: Level
Type of initialisation: Estimate

—————————————— PARAMETER OPTIMIZATION ——————————————

Parameter starting values:

Parameter type Value Free/Fix
Log intensity: RW κ 0.0200 Free
Log intensity: slope κ 0.0200 Free
Log intensity: init 4.8098 Free
Log intensity: init slope 0.0000 Free
Log intensity: β LGerDeaths 1 1.0000 Fixed
Dispersion 5.0000 Free
Start estimation
it0 f= -16.35430024
it10 f= -5.43577140
it20 f= -4.98910688
it30 f= -4.91104728
it40 f= -4.90077214
it50 f= -4.89394127
it60 f= -4.89272556
it70 f= -4.89271867
it80 f= -4.89271867
it82 f= -4.89271867
Strong convergence using numerical derivatives
Log-likelihood = -278.884964; T = 57

Optimized parameter values:

Parameter type Value Free/Fix
Log intensity: RW κ 2.5372e-51 Free
Log intensity: slope κ 2.2026e-07 Free
Log intensity: init -0.2443 Free
Log intensity: init slope -0.0687 Free
Log intensity: β LGerDeaths 1 1.0000 Fixed
Dispersion 5.7105 Free
Estimation process completed in 1.0981 seconds

——————————————— STATE INFORMATION ———————————————
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Component intensity Initial Time T
Mean 1.5665 114.2042
Composite signal 0.4488 4.7380
Random walk -0.2443 -4.0912
Slope -0.0687 -0.0687
Xβ 0.6931 8.8292

8.1.1 Including a daily seasonal

To include the daily (seasonal) effect in the model, we take the following steps:

Step 2
Leave everything the same except tick the Seasonal check box and select 7 as the seasonal
length.

Step 3
Make sure the Log intensity: β LGerDeaths 1 parameter is still fixed to 1.0 and click the
green Estimate button.

Output
We should now see the graph in Figure A.3 on our screen and the following text output on
the main page.

Time Series Lab - Score Edition 1.20, Copyright c© 2019-2020 Nlitn

Session started at 2020-05-29 08:56

——————————————— MODEL DESCRIPTION ———————————————

Database
Model number: TSL002
The database used is: C:/TSL/data/GermanyCovid.xlsx
The selection sample is: 1 - 57 (N = 1, T = 57 with 0 missings)

Distribution
The dependent variable is DGerDeath
The selected distribution is the Negative Binomial distribution with parameters:

Parameters Symbol Time-varying Domain
Mean λ Yes > 0
Dispersion r No > 0
Parameter specification
λ = exp(Level + Seasonal(7) + Xβ + Score(1))
r = constant

Explanatory variables
Explanatory variable for location is: LGerDeaths 1

Initialisation of intensity
Initialisation component: Level
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Type of initialisation: Estimate

—————————————— PARAMETER OPTIMIZATION ——————————————

Parameter starting values:

Parameter type Value Free/Fix
Log intensity: RW κ 1.2000e-07 Free
Log intensity: slope κ 7.0000e-08 Free
Log intensity: init -0.2444 Free
Log intensity: init slope -0.0687 Free
Log intensity: seasonal κ 0.0200 Free
Log intensity: init seasonal 1 0.0000 Free
Log intensity: init seasonal 2 0.0000 Free
Log intensity: init seasonal 3 0.0000 Free
Log intensity: init seasonal 4 0.0000 Free
Log intensity: init seasonal 5 0.0000 Free
Log intensity: init seasonal 6 0.0000 Free
Log intensity: β LGerDeaths 1 1.0000 Fixed
Dispersion 5.7101 Free
Start estimation
it0 f= -4.88405823
it10 f= -4.72022123
it20 f= -4.70145346
it30 f= -4.70103513
Strong convergence using numerical derivatives
Log-likelihood = -267.959002; T = 57

Optimized parameter values:

Parameter type Value Free/Fix
Log intensity: RW κ 1.2000e-07 Free
Log intensity: slope κ 6.9995e-08 Free
Log intensity: init -0.2255 Free
Log intensity: init slope -0.0700 Free
Log intensity: seasonal κ 3.9944e-07 Free
Log intensity: init seasonal 1 0.1983 Free
Log intensity: init seasonal 2 0.1365 Free
Log intensity: init seasonal 3 0.3596 Free
Log intensity: init seasonal 4 -0.1110 Free
Log intensity: init seasonal 5 -0.1566 Free
Log intensity: init seasonal 6 -0.4516 Free
Log intensity: β LGerDeaths 1 1.0000 Fixed
Dispersion 13.2568 Free
Estimation process completed in 0.8404 seconds

——————————————— STATE INFORMATION ———————————————

Component intensity Initial Time T
Mean 1.9464 132.1427
Composite signal 0.6660 4.8839
Random walk -0.2255 -4.1437
Slope -0.0700 -0.0700
Seasonal 0.1983 0.1983
Xβ 0.6931 8.8292
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8.1.2 Creating subplots

All the extracted components of our dynamic Gompertz model can be visualized in one graph.
Take the following steps:

Step 4
Click the Clear all button. Go to the first tab called Intensity and set the radio button to
individual components. Tick the Level check box. Click the Add subplot button and tick the
Seasonal check box. Click the Add subplot button and tick the Xβ check box.

Go to the second tab called Residuals. Click the Add subplot button and tick the Residuals
check box.

You should now see the 2 × 2 subplot in Figure 8.1. How do these components relate to our
time series yt? Our time series, called DGerDeath, can be fully reconstructed by summing up
the time-varying components in the following way

DGerDeath = exp(Level + Seasonal +Xβ) +Residuals

You can verify this by saving the components and manually check the above equation.

Figure 8.1
All extracted components of the dynamic Gompertz model
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Appendix A

Dynamic models

Why do we need dynamic models? Short answer, the world is dynamic. The more we can
capture dynamics, the better we understand the world’s processes and the better we can
predict them. Many processes exhibit some form of dynamic structure. The list of examples
is endless and contains almost every academic field. For example, finance where the volatility
of stock price returns is not constant over time. In Economics, where the sale of clothing
items exhibit strong seasonality due to summer and winter but also daily seasonal patterns
because Saturday will be, in general, a more busy day than Monday, the trajectory of a rocket
in Engineering, The El Niño effect due to change in water temperature in Climatology, the
number of oak processionary caterpillars throughout the year in Biology, to name a diverse
few. If we would be interested in saying anything meaningful about the examples above we
need to deal with time-varyingness in some sort of way.

We illustrate the strength of dynamic models with figures. The data is the number of
deaths in Germany from coronavirus from March 11th 2020 up to, and including, May 6th,
see Figure A.1.

Figure A.1
Number of deaths in Germany from coronavirus

Number of deaths in Germany
from coronavirus from March
11th 2020 up to, and including,
May 6th. The estimated static
mean of the Negative Binomial
distribution is displayed as well.
Log Likelihood value: -329.27.
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The series is analysed by Harvey and Kattuman (2020) and Harvey and Lit (2020) with TSL -
SE . Figure A.1 shows the static mean of the Negative Binomial distribution and we can clearly
see that a static mean would give a model fit that can be easily improved on. In the beginning
of the sample the mean is much to high and during the worst period the static mean is far
below the actual number of deaths. Needless to say, we could not use a static model to make
accurate forecasts for this series. To capture the in-sample model fit in a number, we use the
Log Likelihood value which for the Negative Binomial model and a static mean, applied to
these series, is -329.27.

Now consider the situation if we would make the mean time-varying by allowing it to have
some smooth pattern over time, we refer to the case study in Chapter 8 and Harvey and Lit
(2020) for model details. The dynamic mean clearly follows the data much better and as a
result our Log Likelihood value increases (strongly) to -278.83.

Figure A.2
Number of deaths from coronavirus and time-varying mean

Number of deaths in Germany
from coronavirus and the dy-
namic mean of the Negative Bi-
nomial distribution. Log Likeli-
hood value: -278.83.
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As it turns out, model fit can be further improved by taking into account the daily effect of
the time series. The Log Likelihood value increases to -267.78 and the excellent model fit is
displayed in Figure A.3. The figures in this section can all be replicated with TSL - SE , see
the case study in Chapter 8 for model details.
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Figure A.3
Number of deaths from coronavirus, dynamic mean with daily effect

Number of deaths in Germany
from coronavirus and the dy-
namic mean of the Negative Bi-
nomial distribution. The dy-
namic mean includes a daily sea-
sonal component. Log Likeli-
hood value: -267.78.
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Appendix B

Score-driven models

Consider a parametric model for an observed time series y = (y′1, . . . , y′n)′ that is formulated
conditionally on a latent m×1 time-varying parameter vector αt, for time index t = 1, . . . , n.
We are interested in the statistical behavior of αt given a subset of the data, i.e. the data
up to time t − 1. One possible framework for such an analysis is the class of score-driven
models in which the latent time-varying parameter vector αt is updated over time using an
autoregressive updating function based on the score of the conditional observation probability
density function, see Creal et al. (2013) and Harvey (2013). The updating function for αt is
given by

αt+1 = ω +
p∑
i=1

Aist−i+1 +
q∑
j=1

Bjαt−j+1,

where ω is a vector of constants, A and B are fixed coefficient matrices and st is the

scaled score function which is the driving force behind the updating equation. The unknown
coefficients ω, A and B depend on the static parameter vector ψ. The definition of st is

st = St · ∇t, ∇t = ∂ log p(yt|αt,Ft−1;ψ)
∂αt

, t = 1, . . . , n,

where ∇t is the score vector of the (predictive) density p(yt|αt,Ft−1;ψ) of the observed time

series y = (y′1, . . . , y′n)′. The information set Ft−1 usually consists of lagged variables of αt
and yt but can contain exogenous variables as well. To introduce further flexibility in the
model, the score vector ∇t can be scaled by a matrix St. Common choices for St are unit
scaling, the inverse of the Fisher information matrix, or the square root of the Fisher inverse
information matrix. The latter has the advantage of giving st a unit variance since the Fisher
information matrix is the variance matrix of the score vector. In this framework and given past
information, the time-varying parameter vector αt is perfectly predictable one-step-ahead.

The score-driven model has three main advantages: (i) the ‘filtered’ estimates of the time-
varying parameter are optimal in a Kullback-Leibler sense;(ii) since the score-driven models
are observation driven, their likelihood is known in closed-form; and (iii) the forecasting per-
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formance of these models is comparable to their parameter-driven counterparts, see Koopman
et al. (2016). The second point emphasizes that static parameters can be estimated in a
straightforward way using maximum likelihood methods.



Appendix C

Submodels of score-driven models

Score-driven models encompass several other econometric models, among several well-known
like ARMA models and the GARCH model of Engle (1982). Furthermore the ACD model of
Engle and Russell (1998), the autoregressive conditional multinomial (ACM) model of Russell
and Engle (2005), the GARMA models of Benjamin et al. (2003), and the Poisson count
models discussed by Davis et al. (2005). We now show mathematically how ARMA and
GARCH models are submodels of score-driven models.

C.1 The ARMA model
Consider the time-varying mean model

yt = αt + εt, εt ∼ NID(0, σ2),

for t = 1, . . . , T and where NID means Normally Independently Distributed. If we apply the
score-driven methodology as discussed in Appendix B and we take p = q = 1 we have,

αt+1 = ω + βαt + κst, st = St · ∇,

where

∇t = ∂`t
∂αt

, St = −Et−1

[
∂2`t

∂αt∂αt

]−1

,

with
`t = −1

2 log 2π − 1
2 logσ2 − 1

2σ2 (yt − αt)2.

We obtain
∇t = 1

σ2 (yt − αt), St = σ2,

and st = yt − αt which is the prediction error. This means that the score updating becomes

αt+1 = ω + βαt + κ(yt − αt),
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and if we now replace αt = yt − εt, we have

yt+1 = ω + βyt + εt+1 + (κ− β)εt,

and hence score updating implies the ARMA(1,1) model for yt

yt = ω + φyt−1 + εt + θεt−1,

where φ ≡ β and θ = κ− β. Furthermore, if we set κ = β, we obtain the AR(1) model and
if we set β = 0 we obtain the MA(1) model. The above is valid for higher lag orders p, q as
well which means that the score-driven framework encompasses the ARMA(p,q) model.

C.2 The GARCH model
The strong results of the above section holds, with a couple of small changes, for the time-
varying variance model as well. Consider the time-varying variance model

yt = µ+ εt, εt ∼ NID(0, αt),

for t = 1, . . . , T and where NID means Normally Independently Distributed. After setting
µ = 0 we have the predictive logdensity

`t = −1
2 log 2π − 1

2 logαt −
y2
t

2αt
.

We obtain
∇t = 1

2α2
t

y2
t −

1
2αt

= 1
2α2

t

(y2
t − αt).

Furthermore we have St = 2α2
t and we obtain st = y2

t − αt. This means that the score
updating becomes

αt+1 = ω + βαt + κ(y2
t − αt),

and hence score updating implies the GARCH(1,1) model

αt+1 = ω + φαt + κ∗y2
t ,

where φ = β − κ and κ∗ ≡ κ. Furthermore, if we set κ = β, we obtain the ARCH(1) model.
The above is valid for higher lag orders of p, q as well which means that the score-driven
framework encompasses the GARCH(p,q) model.

It should be emphasized that a score-driven time-varying variance model with Student t
distributed errors is not equal to a GARCH-t model.
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