
Time Series Lab Manual

Rutger Lit

Preface

Time Series Lab is a platform that facilitates the analysis, modelling, and forecasting of
time series in a highly interactive way with much graphical support. The users can base
their analyses on a large selection of time series approaches, including Box-Jenkins models,
exponential smoothing methods, score-driven location models and basic structural time series
models. Therefore, users only concentrate on selecting models that fit the data best.

Furthermore, Time Series Lab allows the users to select a wide range of dynamic compo-
nents that are related to, for example, trend, seasonal and stationary cycle processes, in order
to build their own time series models.

Time Series Lab fully relies on advanced state space methods such as the Kalman filter
and related smoothing algorithms. These methods have proven to be very effective in provid-
ing powerful solutions for many time series applications. For example, Time Series Lab can
handle missing values in all model settings.

More information can be found on https://timeserieslab.com.

The software is developed by R. Lit (Nlitn) and Prof. S.J. Koopman in cooperation with Prof.
A.C. Harvey. Copyright © 2019-2023 Nlitn. Time Series Lab should be cited in all reports
and publications involving its application.

Feedback: we appreciate your feedback on the program. Please let us know by sending an
email to feedback@timeserieslab.com.

Bugs: encountered a bug? Please let us know by sending an email to bugs@timeserieslab.com.
Please describe the exact steps you took to reach to the point where you found the bug.

Contact: for questions about Time Series Lab or inquiries about commercial versions of the
program, please send an email to info@timeserieslab.com.

Contents

Preface ii

1 Getting started 1
1.1 Installing and starting TSL . 2
1.2 Frontpage . 2
1.3 Time Series Lab modules . 3

2 Connect to database 5
2.1 Select database connection . 5

2.1.1 Search in database . 5
2.1.2 Download series . 6

3 Select & prepare data 7
3.1 Database . 7

3.1.1 Load database . 7
3.1.2 Save database . 8
3.1.3 Time axis specification . 8
3.1.4 Select dependent variable . 9
3.1.5 Data transformation . 9

3.2 Graphical inspection of the data . 11
3.2.1 Type of plots . 11
3.2.2 Plot area . 12

3.2.2.1 Data characteristics and statistical tests 12
3.2.2.2 Undocking the plot area 13

4 Pre-built models 15
4.1 Model selection . 15
4.2 Score-driven models . 16

4.2.1 Auto detect optimum p, q . 18
4.3 Model averaging . 19

4.3.1 Equal weights averaging . 19
4.3.2 Least squares . 19

4.3.3 Restricted least squares . 20
4.3.4 Forecast variance weighted . 20

5 Build your own model 21
5.1 Structural time series models . 21

5.1.1 Level . 22
5.1.2 Slope . 23
5.1.3 Seasonal short . 24
5.1.4 Seasonal medium . 25
5.1.5 Seasonal long . 25
5.1.6 Cycle short / medium / long . 25
5.1.7 ARMA(p,q) I and II . 26
5.1.8 Explanatory variables . 26

5.1.8.1 Select variables . 27
5.1.8.2 Lag finder . 29
5.1.8.3 Settings . 29

5.1.9 Intervention variables . 30

6 Estimation 32
6.1 Edit and fix parameter values . 33
6.2 Estimation options . 34

7 Graphics and diagnostics 36
7.1 Selecting plot components . 36
7.2 Plot area . 38
7.3 Additional options . 38

7.3.1 Plot confidence bounds . 38
7.3.2 Add lines to database . 39
7.3.3 Select model / time series . 40
7.3.4 Plot options . 40

7.4 Print diagnostics . 40
7.4.1 State vector analysis . 40
7.4.2 Missing observation estimates . 41
7.4.3 Print recent state values . 41
7.4.4 Print parameter information . 41
7.4.5 Residual summary statistics . 42
7.4.6 Residual diagnostics . 42
7.4.7 Outlier and break diagnostics . 42
7.4.8 Model fit . 42

7.5 Save components . 43

8 Forecasting 44
8.1 Forecast components . 45
8.2 Additional options . 46

8.2.1 Plot confidence bounds . 46
8.2.2 Select model / time series . 46
8.2.3 Plot options . 46

8.3 Load future . 46
8.4 Save forecast . 47
8.5 Output forecast . 47

9 Text output 48

10 Model comparison 49
10.1 Loss calculation procedure . 49
10.2 Start loss calculation . 50

11 Batch module 51

12 Case studies 52
12.1 Nile data . 52

12.1.1 Loading data . 52
12.1.2 Pre-built models . 53
12.1.3 Graphical output . 54
12.1.4 Missing data . 55
12.1.5 Comparing results . 56
12.1.6 Outliers and Structural breaks . 58
12.1.7 Further exploration . 60

12.2 Gasoline consumption . 61
12.2.1 Local Linear Trend model . 61
12.2.2 Basic Structural Time Series model 63
12.2.3 Further exploration . 65

12.3 UK GAS consumption . 68
12.3.1 Energy consumption without intervention variables 68
12.3.2 Energy consumption with intervention variables 70

12.4 El Nino . 74
12.4.1 Loading and inspecting the data . 74

12.4.1.1 Periodicity in the time series 75
12.4.2 Model: level + slope + seasonal 76
12.4.3 Model: level + seasonal + cycle1 + cycle2 79
12.4.4 Further exploration . 81

12.5 Long memory . 82

12.5.1 Score-driven models . 82
12.5.2 Two component model . 85

12.6 US meat production . 89
12.6.1 Basic structural time series model 89
12.6.2 Adding a cycle component . 90
12.6.3 Quarterly data . 91
12.6.4 Further exploration . 92

12.7 Call center . 93
12.7.1 Building the model . 94
12.7.2 Seasonal variance extension . 95

12.8 Regression with ARMA errors . 97
12.8.1 Regression model in TSL . 97
12.8.2 Regression model with ARMA(p,q) errors 99

12.9 Smooth trend . 102
12.9.1 Integrated Random Walk . 102

12.10Electricity consumption . 105
12.10.1 Local level model . 105
12.10.2 Daily seasonal with a period of 24 106
12.10.3 Weekday seasonal with a period of 168 106
12.10.4 Annual seasonal with a period of 8766 107

Appendices 111

A Dynamic models 112

B State Space models 114

C Score-driven models 115

D Submodels of score-driven models 117
D.1 The ARMA model . 117
D.2 The GARCH model . 118

Bibliography 119

vii

Chapter 1

Getting started

If you’re interested in time series analysis and forecasting, this is the right place to be. The
Time Series Lab (TSL) software platform makes time series analysis available to anyone with
a basic knowledge of statistics. Future versions will remove the need for a basic knowledge
altogether by providing fully automated forecasting systems. The platform is designed and
developed in a way such that results can be obtained quickly and verified easily. At the same
time, many advanced time series and forecasting operations are available for the experts.

There are a few key things to know about TSL before you start. First, TSL operates using
a number of different steps. Each step covers a different part of the modelling process. Before
you can access certain steps, information must be provided to the program. This can be, for
example, the loading of data or the selection of the dependent variable. The program warns
you if information is missing and guides you to the part of the program where the information
is missing. We will discuss each step of the modelling process and use example data sets to
illustrate the program’s functionality.

Throughout this manual, alert buttons like the one on the left will provide you
with important information about TSL.

Furthermore, throughout the software, info buttons, like this blue one on the left,
are positioned where additional information might be helpful. The info button
displays its text by hovering the mouse over it.

TSL uses its algorithms to extract time-varying components from the data. In its simplest
form, this is just a Random walk but it can be much more elaborate with combinations of
Autoregressive components, multiple Seasonal components, and Explanatory variables. You
will see examples of time-varying components throughout this manual. The workings and
features of TSL are discussed in Chapter 3–11. If you are more interested in Case studies and
see TSL in action, go to Chapter 12.

We refer to Appendix A – D for background and details of time series methodology.

CHAPTER 1. GETTING STARTED 2

Appendix A illustrates the strength of dynamic models and why dynamic models are often
better in forecasting than static (constant over time) models. Several of the algorithms of
Time Series Lab are based on State Space methodology, see Harvey (1990) and Durbin and
Koopman (2012) and the score-driven methodology, see Creal et al. (2013) and Harvey (2013).
Appendix B discusses the mathematical framework of state space models and Appendix C
discusses the mathematical framework of score-driven models. Knowledge of the methodology
is not required to use TSL but is provided for the interested reader. Appendix D shows that
well-known models like ARMA and GARCH models are submodels of score-driven models.

1.1 Installing and starting TSL
Time Series Lab comes in two versions, the Home edition and the Enterprise edition. The
Home edition can be downloaded for free from https://timeserieslab.com. It has almost
every feature and algorithm that the Enterprise edition has. The main difference is that the
Home edition is restricted to univariate time series analysis. The commercial Enterprise edition
supports companies and institutions to process large volumes of time series in a sequential
manner. It further allows TSL to be modified and extended on an individual basis. Also,
additional modules can be added to TSL, creating a hands-on platform that is finely tuned
towards the particular needs of the user(s). More information can be obtained by sending an
email message to info@timeserieslab.com.

Windows 10 64bit and Windows 11 64bit are the supported platforms. TSL can be
started by double-clicking the icon on the desktop or by clicking the Windows Start button
and selecting TSL from the list of installed programs. TSL is generally light-weight under
normal circumstances. It needs less than 600 MB hard-disk space and 600 MB RAM.

1.2 Frontpage
After starting the Home edition of TSL, you see the screen as shown in Figure 1.1. It shows
TSL’s logo at the top of the page. The information banner in the middle of the screen displays
relevant updates on Time Series Lab. Examples are, information on upcoming new versions
of TSL or organized courses / summer schools / winter schools which involves TSL in any
way. Information is refreshed every eight seconds and currently does not hold any sponsored
content.

The Get Started button leads you to the Database page where you can load your data
set. The Find out more buttons opens the web browser and shows information of the TSL
Enterprise edition.
Within TSL, you can always return to the Front page by clicking File ▶ Front page in the
menu bar at the top of the page.

3 1.3. TIME SERIES LAB MODULES

Figure 1.1
Front page of TSL Home edition

1.3 Time Series Lab modules
The modules of TSL can be accessed by clicking the buttons located at the left of the screen,
see Figure 1.2. The modules are:

• Connect to Database
• Select & Prepare data
• Pre-built models
• Build Your Own Model
• Estimation
• Graphics & Diagnostics
• Forecasting
• Text Output
• Model Comparison
• Batch Module

All modules are described in detail in the following chapters. The Batch module allows you to
program and schedule TSL yourself without going through all the menus and pages manually.

CHAPTER 1. GETTING STARTED 4

Figure 1.2
Modules of TSL are accessed using the buttons left of the screen

Chapter 2

Connect to database

There are currently two ways of getting data in TSL. The first method is with a database
connection to an API server and this method is discussed in this chapter. The second method
is by manually loading a data file. This option is discussed in Chapter 3. To connect to a
database via an API server, navigate to the Connect to Database page.

2.1 Select database connection
Currently the only available database connection is to the Federal Reserve Economic Data —
FRED — St. Louis Fed database. We will add more connections in the future. Let us know
if you have suggestions! To connect to a database, perform the following steps:

1. Select a database from the drop-down menu

2. Set the API key

3. Click the connect button

If you do not have an API key to the selected database, you can request one by clicking the
Get API key button which will lead you to a sign-up page to request an API key. After a
successful connection is made, additional features become available.

2.1.1 Search in database

The search in database option allows you to search for keywords in the database you are
connected to. For example, in Figure 2.1 we searched for inflation Japan and the search
results from the API server are displayed in the right side of the screen. You might need to
scroll down and/or to the right to see all information that was received from the API server.

CHAPTER 2. CONNECT TO DATABASE 6

Figure 2.1
Connect to database page

2.1.2 Download series

A time series can be downloaded by providing the series ID to the Download series entry field.
The simplest way of setting the ID is by double clicking the ID in the text field (right side
screen). Alternatively, you can manually type the ID or highlight the ID in the text field and
click the right-mouse key followed by clicking Select for download.

Tick the checkbox Add to existing data if you want TSL to add the newly downloaded
data to the existing database of previously downloaded series. Note that downloaded data can
be added to the existing database only if the frequency matches (quarterly, monthly, etc.). If
not, the current database is overwritten with the most recent downloaded data.

Press the Download button to download the series and if this is succesfull, the time series
is placed in the TSL database and you are brought to the Select & Prepare data page for
further processing.

Chapter 3

Select & prepare data

The first step in any time series analysis is the inspection and preparation of data.
In TSL, clicking the button as shown on the left brings you to the data inspection
and preparation page, see also Figure 3.1. You are also directed to this page after

clicking the Get Started button on the Front page. The Nile data set1 that comes bundled
with the installation file of TSL is used as illustration.

3.1 Database

3.1.1 Load database

The data set is loaded and selected from the file system by pressing the Load database button
or by clicking File ▶ Load data.

Important: The data set should be in column format with headers. The format
of the data should be *.xls(x), or *.csv, *.txt with commas as field separation. The
program (purposely) does not sort the data which means that the data should be

in the correct time series order before loading it into the program.

After loading the data, the headers of the data columns appear in the Database section at
the top left of the page. TSL automatically plots the second column of the database after
loading. Plot a different variable by clicking on another header name. Ctrl-click or Shift-click
to plot multiple variables in one graph. As shown in 3.1, the Nile data is currently highlighted
and plotted.

1The Nile data set consists of annual averages of series of daily readings of the flow volume for the river
Nile, measured at the city of Aswan, the annual time series is from 1871 to 1970.

CHAPTER 3. SELECT & PREPARE DATA 8

Figure 3.1
Data inspection and preparation page

3.1.2 Save database

The loaded data set can also be saved to the file system. This will not be useful right after
loading but extracted signals from the modelling process are added to the Database at a
later stage and can therefore be easily saved for further processing. Additionally, transformed
variables, see Section 3.1.5, appear in the Database section as well.

3.1.3 Time axis specification

For time series analysis, time is obviously an important factor. As mentioned in Section 3.1.1,
the loaded database should already be in the correct time series order before loading it in
TSL. A time series axis can be specified as follows. First, TSL tries to auto detect the time
axis specification (e.g. annual data, daily data) from the first column of the data set. In the
case of the Nile data illustration in Figure 3.1, it finds an annual time axis specification. If
the auto detection fails, the program selects the Index axis option which is just a number for
each observation, 1, 2, 3,

You can specify the time axis manually as well via the User specified option or the Select
time axis option. The User specified option, opens a new window in which the user can
specify the date and time stamp of the first observation and the interval and frequency of the
time series. The newly specified time axis shows up in the plot after pressing confirm (and
exit). The Select time axis option allows the user to select the time axis from the loaded

9 3.1. DATABASE

database. If the time axis format is not automatically found by the program the user can
specify this via the Format input field. The text behind the info button tells us:

Specify date format codes according to the 1989 C-standard convention, for example:

2020-01-27: %Y-%m-%d
2020(12): %Y(%m)
2020/01/27 09:51:43: %Y/%m/%d %H:%M:%S

Specify ‘Auto’ for auto detection of the date format.

Note that a time axis is not strictly necessary for the program to run and an Index axis will
always do.

3.1.4 Select dependent variable

The so-called y-variable of the time series equation is the time series variable of interest,
i.e. the time series variable you want to model, analyze, and forecast. You can specify
the dependent variable by selecting it from the drop-down menu located under the Select
dependent variable section of the Database page. Alternatively, the dependent variable is
automatically selected if a variable is selected to be plotted by clicking on it. In our example,
the highlighted variable Nile also appears in the Select dependent variable drop down menu.
The dependent variable needs to be specified because without it, the software cannot estimate
a model.

3.1.5 Data transformation

If needed, you can transform the data before modelling. For example if the time series consists
of values of the Dow Jones Index, a series of percentage returns can be obtained by selecting
percentage change from the Data transformation drop-down menu followed by clicking the
Apply transformation button. Note that the (original) variable before transformation should
be highlighted before applying the transformation to tell the program which variable to trans-
form. An example is given in Figure 3.2 where the Nile data is transformed by taking logs.
The newly transformed log variable (Nile log) is added to the variables in the Database section
and is automatically highlighted and plotted after the transformation. Transformations can
be combined by applying transformations to already transformed variables. Newly created
transformed variables can be removed from the database by right mouse clicking the variable
and selecting the Delete from database option from the popup menu.
Depending on the selection, spin boxes under the Apply transformation button become visible
to provide additional input.

CHAPTER 3. SELECT & PREPARE DATA 10

Lag operator:
Lagged variables can be added to the model as well. Often these are explanatory variables,
e.g. Xt−1. Lagging a time series means shifting it in time. The number of periods shifted can
be controlled by the Add lag spin box which becomes visible after selecting the Lag operator
from the menu. Note the text behind the information button that says:

Please note that values > 0 are lags and values < 0 are leads

Lag all operator:
Same as Lag operator but all lags in between are added to the database as well.

Differencing:
A non-stationary time series2 can be made stationary by differencing. For example, if yt

denotes the value of the time series at period t, then the first difference of yt at period t is
equal to yt − yt−1, that is, we subtract the observation at time t− 1 from the observation at
time t. TSL accommodates for this procedure since differencing is common practice among
time series researchers. However, the methodology of TSL allows the user to explicitly model
non-stationary time series and differencing is not strictly necessary. Note the text behind the
information button that tells us:

Time Series Lab allows the user to explicitly model non-stationary components like trend and seasonal.
However, users might prefer to make the time series stationary by taking first / seasonal differences
before modelling.

Please note that missing values are added to the beginning of the sample to keep the time
series length equal to the original time series length before the difference operation.

Scaling:
Estimating a time series that consist of several very small or large values could potentially lead
to numerical instabilities. This can be resolved by scaling the time series to more manageable
numbers. For example, if sales data is in euros and numbers are high, the time series could
be scaled down to model sales in millions, for example. Alternatively sales in Logs can be
modelled.

Truncate:
After selecting Truncate, two spinboxes appear which allows you to specify the lower and up-
per bound. These values are in the same units as the time series is in and set all observations

2A stationary time series is one whose statistical properties such as mean and variance are constant over
time.

11 3.2. GRAPHICAL INSPECTION OF THE DATA

outside of the bounds to missing values. Note that missing values can easily be taken into
account by TSL.

Winsorize:
After selecting Winsorize, two spinboxes appear that allows you to specify the lower and upper
percentage bound. All observations outside of the percentage bounds are set to the values
corresponding to the lower and upper percentages. This means that, in contrast to Truncate,
they are not set to missing values.

Figure 3.2
Data inspection and preparation page: Logs of Nile data

3.2 Graphical inspection of the data

3.2.1 Type of plots

Different types of time series plots can be activated by selecting one of the six plot types at
the bottom right of the Database page.

• Time series: this just plots the selected time series.
• Autocorrelation function (ACF): this describes how well the value of the time series at

time t is related with its past values t− 1, t− 2, This plot (in combination with the

CHAPTER 3. SELECT & PREPARE DATA 12

PACF plot) is often used to determine the p and q values in ARIMA models. The lags
of the (P)ACF plot can be controlled by the spinbox below Other settings.

• Partial autocorrelation function (PACF): this describes how well the value of the time
series at time t is related with a past value with the correlation of the other lags removed.
For example, it takes into account the correlation between the values at time t and time
t− 2 without the effect of t− 1 on t. This plot (in combination with the ACF plot) is
often used to determine the p and q values in ARIMA models.

• Spectral density: the spectral density and the autocovariance function contain the same
information, but expressed in different ways. Spectral analysis is a technique that allows
us to discover underlying periodicities for example to find the period of cycle components
in the times series. The periodicity of the signal is 2.0 / value on the x-axis.

• Histogram plot: this plots the selected time series in histogram format.
• Seasonal subseries: this plots the seasons from a time series into a subseries, e.g. time

series of only Mondays, followed by only Tuesdays. For example if your data is hourly
data, set the Seasonal length spinbox to 24 and the Seas. multiplier to 1 to obtain a
plot of the intraday pattern. To obtain a plot of the weekdays, set the Seasonal length
spinbox to 24 and the Seas. multiplier to 7.

3.2.2 Plot area

The plot area can be controlled by the buttons on the bottom left of the Database page. The
pan/zoom, zoom to rectangle, and save figure are the most frequently used buttons.

• Home button: reset original view.
• Left arrow: back to previous view.
• Right arrow: forward to next view.
• Pan/zoom: left mouse button pans (moves view of the graph), right button zooms in

and out.
• Zoom to rectangle: this zooms in on the graph, based on the rectangle you select with

the left mouse button.
• Configure subplots: this allows you to change the white space to the left, right, top,

and bottom of the figure.
• Save the figure: save figure to file system (plot area only). To make a screenshot of

the complete TSL window, press Ctrl-p.

Right mouse click on the graph area, opens a popup window in which you can select to
set the Titles of the graph, the time-axis, add or remove the legend, and add or remove the
grid of the plot area.

3.2.2.1 Data characteristics and statistical tests

When clicked, the vertical arrow bar on the right of the screen shows additional information
about the selected time series. The Data characteristics panel shows characteristics of the

13 3.2. GRAPHICAL INSPECTION OF THE DATA

selected time series. It shows statistics like mean, variance, min, and maximum value, among
others characteristics. It also shows the number of missing values in the time series. It should
be emphasized that:

Missing values can easily be taken into account in TSL. Even at the beginning of the time series.

The Statistical tests panel shows the result of the Augmented Dickey-Fuller test and KPSS
test. The null hypothesis of the Augmented Dickey-Fuller test is:

H0 : a unit root is present in the time series

If the p-value < 0.05, H0 is rejected. For our example Nile dataset, we have a p-value of
0.0005 so we reject the null hypothesis. The null hypothesis of the KPSS test is:

H0 : the series is stationary

If the p-value if < 0.05, H0 is rejected. For our example Nile dataset, we have a p-value of
< 0.01 so we reject the null hypothesis. The results of both test may look contradicting at
first but it is possible for a time series to be non-stationary, yet have no unit root and be
trend-stationary. It is always better to apply both tests, so that it can be ensured that the
series is truly stationary. Possible outcomes of applying these stationary tests are as follows:

Case 1: Both tests conclude that the series is not stationary - the series is not stationary

Case 2: Both tests conclude that the series is stationary - the series is stationary

Case 3: KPSS indicates stationarity and ADF indicates non-stationarity - the series
is trend stationary. Trend needs to be removed to make series strict stationary. The
detrended series is checked for stationarity.

Case 4: KPSS indicates non-stationarity and ADF indicates stationarity - the series
is difference stationary. Differencing is to be used to make series stationary. The
differenced series is checked for stationarity.

See also this link for more information. We emphasize that in TSL there is no need to make
a series trend or difference stationary but you can if you prefer. One of the many advantages
of TSL is that trends and other non-stationary components can be included in the model.

3.2.2.2 Undocking the plot area

The plot area can be undocked from the main window by clicking the undock draw window
in the bottom right of the screen. Undocking can be useful to have the graph area on a
different screen but most of its purpose comes from the area underneath the plot area. For

https://www.statsmodels.org/devel/examples/notebooks/generated/stationarity_detrending_adf_kpss.html

CHAPTER 3. SELECT & PREPARE DATA 14

the Enterprise edition of TSL, this area is used to select and summarize all selected time
series. Since the Home edition of TSL is for univariate time series analysis only, this area is
just blank and serves no further purpose.

Chapter 4

Pre-built models

After loading our time series data in TSL, it is time to analyze the time series and
extract information from it. The fastest way to extract information from your time
series is by using the Pre-built models page. Select the models you want to use,

set the training and validation sample, click the green arrow which says Process Dashboard
and let TSL do the rest. But which time series model to use?

4.1 Model selection
TSL comes with a range of pre-programmed time series models for you to choose from, all
with its own characteristics and features. An overview of the available models in TSL is given
in Table 4.1. This table provides a short description of the models and, for the interested
reader, references to the scientific journals the models were published in. You can select one
or multiple models and TSL will give you results of all the selected models in one go. The
alternative is to construct your own time series model based on the selection of components.
This option will be discussed in Chapter 5.

If you are not sure which time series model to select, use the following guideline. Does
your time series data exhibit a trend or seasonal pattern? If neither is present in the time
series, start with Exponential Smoothing or the Local Level model. If your data does contain
trending behavior, use the Holt-Winters or the Local Linear Trend model. If your time series
shows a seasonal pattern as well, use the Seasonal Holt-Winters or the Basic Structural model.
The last two models and the Local Level + Seasonal model take seasonal effects into account,
something which can greatly improve model fit and forecast accuracy. To set the Seasonal
period length (s), enter a number in one of the Spinboxes located beneath one of the seasonal
models. Note that the seasonal period needs to be an integer (whole number). Fractional
seasonal periods can be used when you build your own model, see Chapter 5. TSL tries to
determine the seasonal period from the loaded data and pre-enters it. If it cannot find the

CHAPTER 4. PRE-BUILT MODELS 16

seasonal period length, it reverts to the default period length of 4. You can of course always
change this number yourself. Typical examples of seasonal specifications are:

• Monthly data, s=12
• Quarterly data, s=4
• Daily data, s=7 (for day-of-week pattern)

Once the models are selected, set the length of the training sample by dragging the slider
or by pressing one of the buttons of the pre-set training and validation sample sizes. Model
parameters are optimized based on the data in the training sample and the rest of the data
belongs to the validation sample which is used to assess out-of-sample forecast accuracy. As
a rule of thumb, a model is preferred over a rival model, if model fit in the training sample
(e.g. in-sample RMSE) is better (lower) AND out-of-sample forecast accuracy in the training
sample is better as well. The latter is often harder to achieve compared to improving the fit
in the training sample.

The ENERGY dataset that comes bundled with TSL has quarterly data on energy con-
sumption. It’s an old dataset but good for illustrative purposes since energy consumption
changes with the four seasons. If we would like to model the ENERGY dataset with a Sea-
sonal Holt-Winters model with Additive seasonality (period = 4), a Basic Structural Model
(period = 4), and we want to combine the forecasts of both models by Constrained Least
Squares Model Averaging, we set TSL as shown in Figure 4.1

4.2 Score-driven models
Many time series models are build on the assumption of Normally distributed errors. Despite
its popularity, many time series require a different distribution than the Normal distribution.
One of the major advantages of score-driven models is that you are not restricted to the
Normal distribution, in fact you can choose almost any probability distribution. In many
cases, using a different probability distribution than the Normal leads to increases in model
fit and out-of-sample forecast accuracy.

Score-driven models are a class of linear and non-linear models that can be used to analyse
and forecast a wide range of time series. Score-driven models are so versatile that well-
known models like ARMA and GARCH models, are subclasses of score-driven models, see
also Appendix D. Furthermore, the score-driven model encompasses other well-known models
like the autoregressive conditional duration (ACD) model, autoregressive conditional intensity
(ACI) model, and Poisson count models with time-varying mean. We refer to Appendix C,
Creal et al. (2013), and Harvey (2013) for more information on score-driven models.

The Time Series Lab project started with the Time Series Lab - Dynamic Score Edition
which focused solely on score-driven models and had many probability distributions that the
user could choose from. At the time of writing of this manual, the Time Series Lab - Dynamic

17 4.2. SCORE-DRIVEN MODELS

Table 4.1
Models of TSL and references to scientific literature

The table reports the models of TSL with features and reference to the literature.

Model description Model features Reference

Base models
Exponential Smoothing
Holt-Winters
Seasonal Holt-Winters

Forecasts produced using exponential smoothing meth-
ods are weighted averages of past observations, with the
weights decaying exponentially as the observations get
older. In other words, the more recent the observation
the higher the associated weight. This framework gener-
ates reliable forecasts quickly and for a wide range of time
series, which is a great advantage and of major impor-
tance to applications in industry, see https://otexts.com.

Brown (1959),
Holt (2004),
Winters (1960)

Structural models
Local Level
Local Linear Trend
Local Level + Seasonal
Basic Structural Model

By structural time series models we mean models in
which the observations are made up of trend, seasonal,
cycle and regression components plus error. In this ap-
proach it is assumed that the development over time of
the system under study is determined by an unobserved
series of vectors α1, . . . , αn, with which are associated
a series of observations y1, . . . , yn; the relation between
the αt’s and the yt’s is specified by the state space model.
In TSL, complex dynamics like multiple seasonalities can
modelled with state space models, more information is
presented in Chapter 5. Many time series models are
special cases of the state space model.

Durbin and Koop-
man (2012),
Harvey (1990)

ARIMA models
ARIMA(p,d,q) As with structural time series models, ARIMA models

typically regard a univariate time series yt as made up
of trend, seasonal and irregular components. However,
instead of modelling the various components separately,
the idea is to eliminate the trend and seasonal by dif-
ferencing at the outset of the analysis. The resulting
differenced series are treated as a stationary time se-
ries. ARIMA is an acronym for AutoRegressive Inte-
grated Moving Average and any ARIMA model can be
put into state space form.

Box et al. (2015)

Score-driven models
DCS-g, DCS-t Score-driven models are a class of linear and non-linear

models that can be used to analyse and forecast a wide
range of time series. Score-driven models are so versatile
that well-known models like ARMA and GARCH models
are subclasses of score-driven models, see Appendix D,
Appendix C, and Chapter 4.2 for more information.

Creal et al. (2013),
Harvey (2013)

Model averaging
Equal weights averaging
Least Squares
Restricted Least Squares
Forecast Variance
Weighted

The idea of combining forecasts from different models
as a simple and effective way to obtain improvements in
forecast accuracy was introduced by Bates and Granger
(1969). In almost all cases we cannot identify the true
data generating process of the time series, and combin-
ing different models can play a complementary role in
approximating it.

Bates and Granger (1969),
Timmermann (2006),
Hansen (2008)

https://otexts.com/fpp2/expsmooth.html#ref-Holt57

CHAPTER 4. PRE-BUILT MODELS 18

Figure 4.1
Model settings of TSL on the Pre-built models page

Model settings of TSL for time series with quarterly data with seasonality. Additionally, model averaging of
the two selected models is selected.

Score Edition is still available for downloaded but the idea is to merge all Time Series Lab
projects into one time series package. That would mean that all score-driven models with
their specific distributions and features will, over time, be available in the main Time Series
Lab package. A start with the merging of score-driven models into the current package is
made by introducing the Normal score-driven model (DCS-g) and the Student t score-driven
model (DCS-t). The Student t distribution has, so called, fatter tails compared to the Normal
distribution. Fatter tails mean that outliers have a higher probability of occuring. The benefit
of using the Student t distribution is shown in Case study 12.5.

4.2.1 Auto detect optimum p, q

Both the ARIMA and score-driven models can easily be extended with additional lag structures.
This can be done by setting the p and q parameters. For ARIMA models, there is the extra
option of setting the parameter d which allows for the series to be differenced before being
modelled to make the time series stationary. We refer to the literature in Table 4.1 for more
information on lag structures.

Often, including more lags leads to a higher likelihood value which is a measure of model
fit. However, including more lags comes at the price of more model parameters that need to be
determined. The optimal number of lags p and q, based on the Akaike Information Criterion

19 4.3. MODEL AVERAGING

(AIC), can be found by selecting the Auto detect optimum p, q option. TSL determines
the optimum number of lag structures by applying the Hyndman-Khandakar algorithm, see
Hyndman and Khandakar (2008).

4.3 Model averaging
The idea of combining forecasts from different models as a simple and effective way to obtain
improvements in forecast accuracy was introduced by Bates and Granger (1969). In almost all
cases we cannot identify the true Data Generating Process of the time series, and combining
different models can play a role in approximating it. A popular way to combine the individual
predictions is to consider the following linear model:

Yt = X
′

tβ + εt, t = 1, . . . , T (4.1)

where εt is white noise which is assumed to have a normal distribution with zero mean and
unknown variance, Yt is our observed time series, and Xi,t the point forecast from one of our
selected models for i = 1, . . . , k with k the number of selected models and T the length of
our time series. The parameter vector β can be chosen in different ways each leading to a
different combination of models.

4.3.1 Equal weights averaging

This is the simplest of the model averaging techniques. All weights are chosen equal, meaning
that each point forecast has weight 1/k which gives:

β̂EW A = (1
k
, . . . , 1

k
) and Ỹ EW A

t = 1
k

k∑
i=1

Xi,t.

4.3.2 Least squares

A natural extension to the Equal weights averaging method is to determine the weights by
Least squares estimators. This OLS approach to combine forecasts was proposed by Granger
and Ramanathan (1984). They used OLS to estimate the unknown parameters in the linear
regression model of (4.1). The OLS estimator of the parameter vector β of the linear regression
model is

β̂OLS =
(
X

′
X

)−1
X

′
Y.

Note that the T × (k+1) matrix X has an intercept in its first column. The estimate β̂OLS is
unrestricted meaning that negative weights are allowed. This model often performs very well
in the training set but not always for the validation set. To counter this issue of overfitting,
Restricted least squares might be a good alternative.

CHAPTER 4. PRE-BUILT MODELS 20

4.3.3 Restricted least squares

For the restricted OLS approach, the unknown parameters in the linear regression model (4.1)
are obtained by restricting each of the elements of β̂OLSc to lie between 0 and 1. Furthermore,
the elements of β̂OLSc must sum to 1. Note that the T × k matrix X does not have an
intercept. The estimate β̂OLSc is restricted and negative weights cannot occur.

4.3.4 Forecast variance weighted

This method is also called Bates-Granger averaging. The idea is to weight each model by
1/σ2

i , where σ2
i is its forecast variance. In practice the forecast variance is unknown and needs

to be estimated. This leads to
β̂F V W,i = 1/σ̂2

i∑k
j=1 σ̂

2
i

,

where σ̂2
i denotes the forecast variance of model i which we estimate as the sample variance

of the forecast error ei,t = Xi,t − Yt within the training sample period.

Chapter 5

Build your own model

Instead of selecting a pre-defined model from the Pre-built models page, you can
also build your own model. This requires some basic knowledge and logic but no
extensive statistical knowledge is needed. With the help of this chapter, you can

come a long way. If in doubt, you can always try adding or removing components to see the
effect on model fit and forecast performance. TSL is written in a robust way and adding
components should not break anything so you are free to experiment. If things break, please
let us know so we can make TSL even more robust!

5.1 Structural time series models
The Structural Time Series Model allows the explicit modelling of the trend, seasonal and
error term, together with other relevant components for a time series at hand. It aims to
present the stylised facts of a time series in terms of its different dynamic features which are
represented as unobserved components. In the seminal book of Harvey (1990) it is stated
as follows: “The statistical formulation of the trend component in a structural model needs
to be flexible enough to allow it to respond to general changes in the direction of the series.
A trend is not seen as a deterministic function of time about which the series is constrained
to move for ever more. In a similar way the seasonal component must be flexible enough to
respond to changes in the seasonal pattern. A structural time series model therefore needs to
be set up in such a way that its components are stochastic; in other words, they are regarded
as being driven by random disturbances.” A framework that is flexible enough to handle the
above requirements is the State Space model.

The Basic structural time series model is represented as:

yt = µt + γt + εt, t = 1, . . . , T

where yt is our time series observation, µt is the trend component, γt the seasonal component,
and εt the error term, all at time t. In TSL you can select other or additional components like

CHAPTER 5. BUILD YOUR OWN MODEL 22

cycle (ψt), autoregressive components (ARt), Explanatory variables (Xtβx), and Intervention
variables (Ztβz). We discuss each dynamic component and its characteristics.

A summary of all selected components of the Build your own model page and its charac-
teristics is given in the blue Model specification area of TSL.

Important: Dynamic components each have unique characteristics and can be
combined to form complicated models that reveal hidden dynamics in the time
series.

Intermezzo 1: Time-varying components

TSL extracts a signal from the observed time series. The difference between the
observed time series and the signal is the noise, or the error. The methodology of
TSL relies heavily on filtering time series with the aim to remove the noise from the
observation and to secure the signal in the time series and possibly to identify the
different components of the signal. We are interested in the signal because it provides
us the key information from the past and current observations that is relevant for the
next time period. In its simplest form, the signal at time t is equal to its value in t− 1
plus some innovation. In mathematical form we have

αt = αt−1 + some innovation,

with αt being the signal for t = 1, . . . , T where T is the length of the time series. The
innovation part is what drives the signal over time. A more advanced model can be
constructed by combining components, for example

αt = µt + γt +Xtβ,

where µt is the level component, γt is the seasonal component, Xtβ are explanatory
variables, and where each of the components have their own updating function.

5.1.1 Level

The Level component µt is the basis of many models. If only the (time-varying) level is
selected the resulting model is called the Local Level model and, informally, it can be seen
as the time-varying equivalent of the intercept in the classical linear regression model. The
time-varying level uses observations from a window around1 an observation to optimize model

1We are interested in the statistical behavior of the state, αt, (which includes the level) given a subset
of the data, i.e. the data up to time t − 1 (forecasting), the data up to time t (filtering) or the whole data
set (smoothing). The choice for forecasting, filtering, or smoothing determines which window around the

23 5.1. STRUCTURAL TIME SERIES MODELS

fit locally. How much each observation contributes to the local level fit is optimized by the
algorithms of TSL.

The fixed version of the level is often used in combination with other components. We
will see examples of the use of a fixed (or static) level later in this manual. Figure 5.1 shows
the result of fitting the local level to the Nile data. For completeness, fixed level is added for
comparison. Needless to say, the time-varying local level model fits the data better.

Figure 5.1
Nile data with Local level model, time-varying and static

The figure shows the result of fitting the local level to the Nile data. A fixed level is added for comparison.
Needless to say, the time-varying local level model fits the data better. Lines shown are from the Kalman
Smoother, see Appendix B for more information on Kalman Filtering and Smoothing.

5.1.2 Slope

The slope component νt can only be selected in combination with the level component. It
is used for time series that exhibits trending behavior. If both a time-varying level and time-
varying trend are selected, the model selection corresponds to the Local Linear Trend model.
Certain combinations of the level and slope component can have interesting effects on the
smoothness of the extracted signal. For example, if the level is set to fixed and the slope to
time-varying, often a much smoother signal is obtained. In the literature, the resulting model
is known as an Integrated Random Walk model. Varying levels of smoothness can also be
observations we can use. For example, for forecasting we can only use the data up to time t − 1 and therefore
the window around the data is limited to the data before the current observation at time t only. If we would
use data after time t for forecasting we would use the future to forecast the future!

CHAPTER 5. BUILD YOUR OWN MODEL 24

achieved by setting the order of the trend to a higher number. In general (but definitely not
always), the higher the order, the smoother the resulting signal.

5.1.3 Seasonal short

The inclusion of the Seasonal component γs
t in our model allows us to model a wide range

of time series. Time series can contain a variety of seasonal effects and in TSL you can add
three seasonal components to your model if needed. The info button , next to the seasonal
short component, tells us:

Seasonal period length is the number of time points after which the seasonal repeats. Examples of
seasonal specifications are:

Monthly data, s = 12.
Quarterly data, s = 4.
Daily data, when modelling the weekly pattern, s = 7.

The seasonal period can be a fractional number. For example, with daily data, specify a period of
365.25 for a seasonal that repeats each year, taking leap years into account. See the case studies on
the timeserieslab.com website for more information on how to specify seasonals.

Number of factors specifies the seasonal flexibility. Note that a higher number is not always better
and parsimonious models often perform better in forecasting.

It’s best to explain the seasonal component with an example. Let’s say our time series is
weekly data on gasoline consumption, see also Case study 12.2. With gasoline consumption,
fluctuations are to be expected throughout the year due to, for example, temperature changes
during the year. For the moment assume we have 52 weeks in a year and we would therefore
specify s = 52.0 as the seasonal period. For the number of factors, we specify 10. As a rule
of thumb, do not take the maximum amount of factors (which is s/2) because this makes
the seasonal very flexible which is good for your training sample fit but often performs worse
in forecasting. Another disadvantage of taking a “large” number of factors is that the model
becomes slower to estimate. This is however a general guideline and experimenting might be
necessary. Future version of TSL determine the optimal set of factors.

Now let’s assume that our data on gasoline consumption is still weekly data but we realize
that we need s > 52.0 since we have more than 52.0 weeks in a year. On top of that our dataset
also contains a leap year. We therefore set the seasonal period to s = 365.25/7 = 52.179
where 365.25 is the average number of days in a year in a four year time span including one
leap year and 7 the number of days in one week. This small change of 52.179 − 52.0 = 0.179
in seasonal period length can make a big difference in forecasting as we will see in Case study
12.2.

Another example would be hourly electricity demand. We can expect electricity demand
to change within a 24h cycle with more energy demand during the daytime and less during

25 5.1. STRUCTURAL TIME SERIES MODELS

night time. For this example we would set s = 24.0 to model the 24h cycle within a day, see
also Case study 12.10.

5.1.4 Seasonal medium

If we want to include only one seasonal component in our model we should take the Seasonal
short. But if we want to model a double seasonal pattern we can include Seasonal medium
γm

t as well. Continuing with our hourly electricity demand example, we can use the seasonal
medium to model the day of week pattern on top of the 24h intraday pattern. We can
expect energy demand to be lower during the weekend since, for example, many business are
closed. To model this, we set the seasonal period length of the seasonal medium component
to s = 7 × 24 = 168. For the number of factors, we can specify a number around 20.

5.1.5 Seasonal long

Continuing with our hourly electricity demand example, we can use the seasonal long γl
t to

model the demand pattern throughout the year. Since energy demand often changes with the
four seasons of the year we can s = 24 × 365.25 = 8766.0. Note that our time series needs
to be long and preferably several times s to take the yearly pattern into account.

A combination of seasonal patterns can strongly increase forecast precision as we will see
in Case study 12.10.

5.1.6 Cycle short / medium / long

The cycle and seasonal components have similarities since both components have repeating
patterns. The big difference however is that the seasonal component has a fixed, user set,
period while the period of the cycle components ψs

t , ψ
m
t , ψ

l
t are determined from the data.

This becomes useful if you want to, for example, model GDP and determine the length of the
business cycle. Time series can contain multiple cycles as we will see in Case study 12.4 where
an El Nino time series contains complex dynamics with three cycle patterns. The statistical
specification of a cycle ψt is as follows:ψt

ψ∗
t

 = ρ

 cosλc sinλc

−sinλc cosλc

 ψt−1

ψ∗
t−1

 +
κt

κ∗
t

 , t = 1, . . . , T (5.1)

where λc is the frequency, in radians, in the range 0 < λc < π, κt and κ∗
t are two mutually

uncorrelated white noise disturbances with zero means and common variance σ2
κ, and ρ is

a damping factor with 0 ≤ ρ ≤ 1. Note that the period is 2π/λc. The stochastic cycle
becomes a first-order autoregressive process if λc = 0 or λc = π. The parameters λc, ρ, σ

2
κ

are determined by the algorithms of TSL.

CHAPTER 5. BUILD YOUR OWN MODEL 26

5.1.7 ARMA(p,q) I and II

An autoregressive moving average process of order p, q, ARMA(p,q), is one in which the
current value is based on the previous p values and error terms occurring contemporaneously
and at various times in the past. It is written as:

xt = ϕ1xt−1 + ϕ2xt−2 + . . .+ ϕpxt−p + θ1ϵt−1 + θ2ϵt−2 + . . .+ θpϵt−p + ϵt,

with ϵt being white noise, ϕ1, . . . , ϕt−p being the AR coefficients that determine the persistence
of the process, and θ1, . . . , θt−p being the MA coefficients. The process is constrained to be
stationary; that is, the AR and MA coefficients are restricted to represent a stationary process.
If this were not the case there would be a risk of them being confounded with the random
walk component in the trend. Since the ARMA(p, q) processes of TSL are stationary by
construction, the processes fluctuates around a constant mean which is zero in our case. The
persistence of fluctuations depend on the values of the ϕ parameters. When there is a high
degree of persistence, shocks that occur far back in time would continue to affect yt, but by
a relative smaller amount than shocks from the immediate past. If an autoregressive process
is needed that fluctuates around a number other than zero, add a fixed (constant) Level
component in combination with the autoregressive process.

A second ARMA(p, q) process can be added to the model. In this setup, the first au-
toregressive process captures persistent and long run behavior while the second autoregressive
process captures short term fluctuations.

5.1.8 Explanatory variables

Explanatory variables play an important and interesting role in time series analysis. Adding
explanatory variables can significantly improve model fit and forecasting performance of your
model. The difficulty often lies in finding explanatory variables that significantly contribute to
model fit and forecasting performance. If we switch Explanatory variables on, a new window
opens like the one presented in Figure 5.2. Alternatively, if the window does not popup,
you can click the Adjust selection button to bring the window to the front. You can choose
between Manually and Automatically. Manually means, all selected variables will be added to
the model, automatically means, variables are selected based on a significance level that you
can set, see also Section 5.1.8.3. In Automatic mode, a TSL algorithm adds and removes
variables and iteratively re-estimates the model in between to end up with a set of explanatory
variables that all have their t-stats above a specified threshold. We note that our algorithm
does not simply remove variables one-by-one. Variables can re-enter the equation at later
stages to increase the probability of ending up with an optimal set of explanatory variables.

Important: We are fully aware that people engage in heated debates on do or
do not remove explanatory variables based on statistical relevance. We do not

27 5.1. STRUCTURAL TIME SERIES MODELS

contribute to that debate here, you just have the option to auto-remove variables
or leave them all in.

5.1.8.1 Select variables

In the explanatory variables window you see a list of all variables in the database with colored
indicators in front of them. Hovering with the mouse over the info button , you see

To select multiple explanatory variables, click the first variable, then Ctrl-click the next variable, and
so on. Click on a variable and press Ctrl-a to select all variables. A consecutive range of variables can
be included by clicking the first variable and Shift-click the last variable in the range.

The color in the first column indicates how likely it is that the variable contributes significantly to the
overall model fit. The green variables should be considered first and the red ones last. The Indicator
lights are based on a pre-analysis and only when the full dynamic model is estimated can we say
something about the actual contribution of the variable.

Important:
The pre-analysis is determined based on results from the last model run.

The explanation of the indicators is in the bottom right corner of the newly opened window.
The colors show the likelihood that an explanatory variable contributes significantly to the fit
of the model. The more significant a variable is, the higher it is on the color ranking scale. Of
course, we can only be certain after we estimate the model but it gives an idea. The colors
are determined based on a regression of the currently selected time series on the rest of the
variables in the database, as in

vt = Vtβ + ϵt, t = 1, . . . , T, (5.2)

where v and V correspond to y and X with dynamics removed. The idea is to use information
from the last model to remove dynamics (trend, seasonal, etc.) from the y and X data to
end up with v and V . After that, a regression from v on V should now reveal relationships
that cannot be explained by dynamics alone and could therefore explained by the regression
variables. The more significant β̂i is, the higher the corresponding regression variable Xi will
be on the color ranking scale.

Some variables are not allowed in the model. These are variables that have values that
cannot be represented by a number, like the values in the date column for example.

The black dot indicator deserves a bit more attention. It is possible to add a black
indicator variable to the model. However, it should be used with a lot of caution. The reason
is as follows: black indicator variables are time series that are added to the database after
estimation. Typically, these are extracted signals like level or seasonal. Take the following

CHAPTER 5. BUILD YOUR OWN MODEL 28

basic structural model
yt = µt + γt + εt, t = 1, . . . , T (5.3)

with level µt seasonal γt and irregular εt. When this model is estimated in TSL (Chapter 6
explains Estimation), the extracted components µt and γt can be added to the database and
show up in the explanatory variables window where they get a black indicator. If now the
following model is estimated:

yt = µt +Xtβ + εt, t = 1, . . . , T (5.4)

where Xt is the black indicator (Smoothed) seasonal component that was obtained from
model (5.3) we could think we have the same model as in 5.3. However, this is not true and
we introduced two errors in the model. The first one is that each component in a state space
model has its own variance (we discuss error bounds in Chapter 7.3.1) but if extracted dynamic
components are added to the model as explanatory variables, the variance gets deflated and
does not represent the true uncertainty in the extracted signals anymore. The second problem
is that the smoothed seasonal is based on all data so adding that to a new model for the same
time series yt is using more observations than you would normally do for prediction. You will
see that you artificially increase model fit by doing this.

A reason to still include a black indicator variable is if an extracted signal is used as
explanatory variable in a model with a different time series yt.

Figure 5.2
TSL - selection of Explanatory variables

TSL window in which Explana-
tory variables can be selected.
All variables of the database
show up here, except the cur-
rently selected y variable, and
each of the variables is color
coded to signal its possible im-
portance to the overall model
fit.

29 5.1. STRUCTURAL TIME SERIES MODELS

5.1.8.2 Lag finder

The Lag finder module uses the same auxiliary regression as in (5.2) but instead of the
contemporaneous X variables in the dataset, it aims to find candidates for significant lags
of the X variables. In time series analysis, often one series leads another. For example, an
explanatory variables at time t − 3 can explain part of the variation in yt. Instead of trying
out all possible lags of all variables, the lag finder module aims at finding these lags for you.
Just as with the regression of (5.2), we can only be certain if a lagged variable contributes
significantly to the model fit after we estimate the model.

Select the X variable(s) for which you want to find significant lags and press the Lag
finder button. If significant lags are found, they show up with a green indicator light in the
explanatory variable list.

5.1.8.3 Settings

The second tab of the Explanatory variables window is the Settings tab. On this tab we set
the t-stat after which an indicator becomes green on the Select variables tab. We can also set
the Maximum allowed p-value which determines how strict we are in removing variables from
the model in the Automatic removal of explanatory variables. Furthermore, you can set which
method to use to replace missing values in explanatory variables and which method to use to
forecast explanatory variables. The need to forecast explanatory variables is given below.

Intermezzo 2: Forecasting explanatory variables

In the diagram below, we have three time points, t1, t2, and T . The start and end
of the training sample are denoted by t1 and t2. The start and end of the validation
sample dataset are denoted by t2 + 1 and T .

t1 t2 T

| | |
begin training sample end training sample end validation sample

The time points t1 and t2 can be set on the Pre-built models page or the Estimation
page. If t2 is set to the end of the dataset (time point T), we have t2 = T and a
validation sample is not specified.

Important, in the case of t2 < T (meaning we have a validation sample), we distinguish
two situations:

- one-step-ahead forecasting
- multi-step-ahead forecasting

For one-step-ahead forecasting we can simply use the explanatory variables from the
loaded dataset. For multi-step-ahead forecasting we need to forecast the explanatory

CHAPTER 5. BUILD YOUR OWN MODEL 30

variables for the time points t2 + 1 to T . This means that we make 1-step, 2-step,
3-step, ..., n-step-ahead forecasts till we reach time point T .

You can choose one of the methods above for multi-step-ahead forecasting of the
explanatory variables.

5.1.9 Intervention variables

Intervention variables are a special kind of explanatory variables. There are two types, Outliers
and Structural breaks, both are very useful for anomaly detection. For example, early warning
systems rely on anomaly detection, also called outlier and break detection. Could a catas-
trophic event have been seen in advance? Take for example sensor readings from an important
piece of heavy machinery. The breaking down of this machine would cost a company a lot of
money. If anomalies were detected in the sensor reading, preventive maintenance might have
saved the company from a break-down of the machine.

For example, if we have the following stochastic trend plus error model

yt = µt + λZt + εt, t = 1, . . . , T

where Zt is an intervention (dummy) variable and λ is its coefficient. If an unusual event is
to be treated as an outlier, it may be captured by a pulse dummy variable at time t = τ , that
is

Zt =

0 for t ̸= τ

1 for t = τ.
(5.5)

A structural break in the level at time t may be modelled by a level shift dummy,

Zt =

0 for t < τ

1 for t ≥ τ.
(5.6)

If we switch Intervention variables on, a new window opens. Alternatively, if the window
does not open, you can click the Adjust selection button to bring the window to the front.
Just as with explanatory variables, you can choose between Manually and Automatically. If
set to manual, the window opens up showing the Select interventions tab. Here you can
specify time points where you want to position outliers and / or structural breaks. Hovering
with the mouse over the info button , we see

Select outliers and structural breaks. If an Outlier and Structural break are set at the same time point,
the Outlier gets precedence.

Add an outlier or structural break by clicking one of the buttons and change the index to

31 5.1. STRUCTURAL TIME SERIES MODELS

reflect the desired date.
If Automatically is selected, the Settings tab is shown. In the automatic case, TSL finds

the outliers and structural breaks for you. The Lowerbound t-stats and Stop algorithm when
both have to do with the stopping condition of the algorithm. Furthermore, the checkboxes
allow you to exclude outliers or structural breaks from the algorithm. We will see an example
of automatic outlier detection in Case study 12.3, among other.

Chapter 6

Estimation

The Estimation page of TSL looks like Figure 6.1. Getting results from TSL can
be achieved in two ways. The first one was discussed in Chapter 4 by using the
Process Dashboard button. The second one is by using the Estimate button on

the Estimation page. Before you press this button there are certain things useful to know, so
let’s discuss them.

Figure 6.1
Estimation page of TSL

33 6.1. EDIT AND FIX PARAMETER VALUES

6.1 Edit and fix parameter values
Components that we have selected on the Build your own model page all have corresponding
parameters that can be set, fixed, and / or estimated. After entering the Estimation page,
TSL has set the parameters to rudimentary starting values based on the sample variance of
the selected time series. These values will later be refined depending on what you tell TSL
to do. Model output results depend strongly on the parameters as listed in the Edit and fix
parameter values section. There are five ways in which you can influence parameter values.

(1) Don’t do anything and press the Estimate button. TSL uses an algorithm to determine
optimal starting values and estimates the model parameters. This is the default option.

(2) Fix a subset of parameters by ticking the boxes in the Fix column and by setting the fix
values in the Value column followed by pressing the Estimate button. TSL again uses
an algorithm to determine optimal starting values and estimates the model parameters
but leaves the fixed parameters to the specified values. Fixing parameter can be useful
to force certain smoothness of the components.

(3) Switch the User defined starting values button on and press the Estimate button. TSL
now does not determine optimal starting values and instead uses the values in the value
column as starting values for the optimization algorithm.

(4) Set the Set estimation method to No estimation and switch on User defined starting
values. You see the Estimate button change to a Process selection button with a green
arrow. After clicking it, TSL will use the parameter values in the value column and
proceeds to output without optimizing the parameter values.

(5) Set the Set estimation method to No estimation and switch off User defined starting
values. You see the Estimate button change to a Process selection button with a green
arrow. After clicking it, TSL will determine optimal starting values but does not proceed
with further optimization and instead goes straight to output.

We can say something, in general, about ordering of the five ways based on which setting
obtains results fastest. If we rank the methods in order of speed starting with the fastest
method we have, (4) – (5) – (2, 3) – (1). Starting values can have a big impact on the speed
of estimation, therefore we cannot say if (2) is faster than (3) or vice versa. We are often
interested in the best model fit for the validation sample. For this we choose method (1),
which is the default.

The software checks the user input in the Value entry boxes because some parameters are
restricted to a certain range, see for an example Figure 6.2.

CHAPTER 6. ESTIMATION 34

Figure 6.2
TSL warning for a non-stationary AR(2) process

TSL warns the user via the In
bounds column that the (user)
specified values lead to an AR(2)
process that is non-stationary.
Hovering over the info button,
we can read “Value is missing
or outside of admissible bounds.
Autoregressive processes are re-
stricted to be stationary.”

6.2 Estimation options
The model parameters, also called hyper parameters, can be estimated by Maximum Likelihood
with the BFGS algorithm or No estimation can be selected so that text and graphical output
will be based on the provided starting values. For the majority of the models, maximizing
the likelihood is a routine affair. Note however, that for more complicated models and the
increase of the number of hyper parameters, optimization can be complex. The info button
next to the BFGS option tell us that:

The BFGS method falls in the category of quasi-Newton optimizers. This class of optimizers is
applicable to many optimization problems and is often used to maximize a likelihood function.

Please be aware that finding a global optimum is not guaranteed and trying different starting values
increases the chance of finding the global optimum.

We are not restricted to estimating the full sample in our data set. If needed, we can
restrict the estimation to a smaller sample by setting the Estimation starts at t and Estimation
ends at t entry boxes.

During estimation results can be communicated to you via the Text output page (see also
Chapter 9). You can choose the amount of detail that is communicated by TSL, we have

• Print model information. This prints the type of model that is currently estimated, the
dependent variable, and the selection sample (t1 − t2).

• Print optimization warnings. This prints starting values, progress of optimization, and
optimized parameter values.

• Print warnings. This prints general warning messages.

35 6.2. ESTIMATION OPTIONS

Furthermore, we have three buttons under Additional options. The Set default estimates
button, sets the values in the value column back to the rudimentary starting values that were
initially there. The Set default estimates button, sets the values in the value column to the
most recent optimized parameter values.

After the successful estimation of a model, a (hyper) parameter report can be generated.
Clicking the Parameter report button brings us to the Text output page where the parameter
report will be printed.

Important: The time it takes to generate the parameter report depends strongly
on the number of hyper parameters, the number of model components, and the
length of the time series. The generation of a parameter report can take the

amount of time it takes to maximize the likelihood.

Chapter 7

Graphics and diagnostics

Graphical inspection of the estimation results is an important step in the time
series modelling process. You are taken automatically to the Graphics page of
TSL after the estimation process has finished. We can manually reach this page

by clicking the button shown on the left. The default graphical output for the Nile data
illustration is displayed in Figure 7.1.

7.1 Selecting plot components
Plotting components is very simple: it only requires ticking the check box corresponding to
the component you would like to see in the graph. Note that some components are greyed
out as they were not selected as part of the model. We have five plot tabs in the upper left
corner of the program,

• Individual: these correspond to single components like Level, Slope, Seasonal etc. The
“Xβ contribution” component shows the contribution of each explanatory variables to
the total explanatory variable signal Xβ. It is also called a Sand graph.

• Composite: these correspond to plots that consist of sums of components like for
example the Total signal which is the sum of all selected components of the model. In
Intermezzo 1, the Total signal would be the sum of the level, seasonal, and explanatory
variables component, i.e. αt = µt + γt +Xtβ. In our Local Level model and Nile data
illustration we have the situation that the Level and the Total signal are exactly equal
due to the Level being the only component in the model.

• Residuals: residuals are the remainder of the time series after the signal is removed. It is
the part that can not be explained by the model. Standardized residuals form the basis
of model specification tests. For example, tests based on the autocorrelation function.
The Autocorrelation function (ACF) plot of the Standardized residuals are shown in
Figure 7.2. This plot is used to assess the performance of the model in explaining the
autocorrelation in the time series. If we see bars larger than the confidence bounds
(horizontal lines) we could try different model specifications since there is signal left

37 7.1. SELECTING PLOT COMPONENTS

to explain. The Local Level model nicely captures the dynamics in the time series,
although one spike at lag 10 is close to the confidence bound.

• Auxiliary: these are special types of residuals and are, for example, used in outlier
detection.

• Transformations: Detrend or seasonally adjust Y based on the extracted components of
the level and the seasonal.

Figure 7.1
Graphical output for Nile data and Local Level model

Despite our simple Local Level model, which is often a useful model, we see that the model nicely follows the
data. It, of course, lags the data by one period because a predictive filter is always based on data up to time
t − 1.

Figure 7.2
Autocorrelation plot of Nile data standardized residuals

Autocorrelation plot of Nile data
Standardized residuals. The Lo-
cal Level model with nicely cap-
tures the dynamics in the time
series.

0 5 10 15 20

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20 ACF standardized residuals (Pred) - Nile - TSL002

CHAPTER 7. GRAPHICAL OUTPUT 38

The difference between Predicting, Filtering and Smoothing is further explained in Ap-
pendix B. These three options are available for State Space models which is every model
combination on the Build your own model page and the Local Level, Local Linear Trend,
Local Level + Seasonal, and Basic Structural Model on the Pre-built models page.

7.2 Plot area
The majority of the buttons below the plot area is explained in Chapter 3 except two new
buttons. These are the add subplot and remove subplot button. Just as the name says, they
add and remove subplots from the plot area. The plot area of TSL can consist of a maximum
of nine subplots. Subplots can be convenient to graphically summarize model results in one
single plot with multiple subplots. Notice that after clicking the add subplot button an empty
subplot is added to the existing graph which corresponds to no check boxes being ticked.

Important: The components that are graphically represented in a subplot directly
correspond to the check boxes that are ticked. Clicking on a subplot activates the
current plot settings.

Notice that by clicking a subplot, a blue border appears shortly around the subplot as a sign
that the subplot is active. If you hover the Clear all button, the tooltip window shows:

The Clear all button clears everything from the figure including all subplots. To have more refined
control over the subplots, right-mouse click on a subplot for more options.

If you hover the Add subplot button, the tooltip window shows:

Click on a subplot to activate it. Notice that by clicking on a subplot, the checkboxes in the top left
of the window change state based on the current selection of lines in the subplot.

If not all checkbox settings correspond with the lines in the subplot, switch the tabs to show the rest
of the selection.

7.3 Additional options
Several more plot options are available on the Graphics page. We discuss them here.

7.3.1 Plot confidence bounds

You have the option to include confidence bounds in the plot. The methodology that is used
if you Build your own model is based on the State Space model, see also Appendix B. One
advantage of the state space framework is that the statistical properties of the state, which

39 7.3. ADDITIONAL OPTIONS

holds all components, is fully known at each time t. This in contrast to many other time
series models that do not possess this property. We can therefore include confidence bounds
for all models that are based on State Space models. To add confidence bounds, first switch
Plot conf. bounds on, and then select the component you want to plot. If plots are requested
for other types of models, the Plot conf. bounds option is not available. The width of the
confidence interval can be controlled by changing the number in the SE field. Furthermore,
you can choose the Line option, which plots two extra lines corresponding to the bounds of
the confidence interval, or select Area to give the whole confidence area a shaded color, see
also Figure 7.3.

Figure 7.3
Graphical output for Nile data and Local Level model

Local Level model with confidence area based on +/- 2.0 standard errors.

7.3.2 Add lines to database

This option is switched off by default. If switched on, every following line that is plotted is
added to the database of the Database page, see also Chapter 3. This allows you to quickly
store extracted signals combined with the data you originally loaded. Use the Save database
button on the Database page to store your data, see also Section 3.1.2.

CHAPTER 7. GRAPHICAL OUTPUT 40

7.3.3 Select model / time series

The drop-down menu corresponding to Select model collects all the previously estimated
models. This is a powerful feature since you can now compare extracted signals from different
models in the same plot. This feature becomes even more powerful in comparing forecast
abilities of different models, see Chapter 10. There are a couple of important things you
should know because under some circumstances models cannot be compared and the drop-
down menu is reset to only the most recent model. This happens if you:

• change time series (different y) on the Database page and estimate a model with the
newly selected time series.

• change the length of the Training sample and estimate a model with the newly selected
training sample.

• load a new database.

In all other cases, the drop-down menu will grow with every new model you estimate.
The drop-down menu corresponding to Select time series holds all time series that were

estimated with the model currently selected by the Select model drop-down menu. For the
TSL Home edition you will see only one time series at a time.

7.3.4 Plot options

Plot options gives you control over the line transformation, line type, and line color of the
lines you want to plot. The defaults are, line transformation: None, line type: Solid, and line
color: Default color cycle. The latter means that for every line drawn a new color is chosen
according to a pre-set color order. You can always choose a color yourself from the drop-down
menu or by clicking the color circle to the right of the Line color drop-down menu.

7.4 Print diagnostics
Clicking the Print diagnostics button in the top right corner of the Graph page opens the
window as shown in Figure 7.4. We are presented the option to chose a model, a time series,
and a selection of diagnostics, and additional output. Note that not all models have the same
number of diagnostic options. Some of the options are reserved for State Space models only
since they have confidence bounds at their disposal (see Section 7.3.1) which some tests are
based on. All output of the diagnostic tests is printed to the Text output page.

7.4.1 State vector analysis

Select this option for a statistical analysis of the components of the state vector at time t2
(last time point of training sample). TSL prints the name of the component, the value at time
t2, the standard error, the t-stat (value / standard error), and the probability corresponding
to the t-stat.

41 7.4. PRINT DIAGNOSTICS

Figure 7.4
TSL diagnostics window

7.4.2 Missing observation estimates

If your time series contains missing values, select this option to give estimates for the missing
values. The estimates are printed to the Text output page. If you want to store these values,
save the Smoothed estimates via the Save components option, see also Section 7.5.

7.4.3 Print recent state values

Select this option to print the last X values of the state for the selected components and
for Predicting, Filtering, and Smoothing. X is the number of recent periods which you can
specify.

7.4.4 Print parameter information

Select this option to print the values of the optimized parameters. For State Space models,
a column with q-values is added which are the ratios of the variance parameters. A 1.0
corresponds to the largest variance in the model.

CHAPTER 7. GRAPHICAL OUTPUT 42

7.4.5 Residual summary statistics

Select this option to print residual characteristics of the standardized residuals. TSL prints
Sample size, Mean, Variance, Median, Minimum, Maximum, Skewness, and Kurtosis. For
State Space models, additional residuals are available, these are Smoothed residuals and
Level residuals which are used for Outlier and Break detection, see also Chapter 5.1.9 and
Case study 12.3.

7.4.6 Residual diagnostics

Depending on the model specification, residuals can be assumed to come from a Normal
distribution. This is for example the case with State Space models. Due to the Normal
assumption, residuals can be formally tested to come from a Normal distribution. Several
tests are available. There are tests that target specific parts of the Normal distribution like
Skewness and Kurtosis and there are tests that combine both, for example the Jarque-Bera
test. Other tests like Shapiro-Wilk and D’Agostino’s K2 take a different approach. TSL
provides Statistics and Probabilities for each of them. In general, a Probability < 0.05 is
considered a rejection of the null hypothesis:

H0 : Standardized residuals are Normally distributed.

Furthermore, a Serial correlation test is provided to test for residual autocorrelation based
on the Ljung-Box test. Currently the number of lags are chosen by TSL. In future versions,
the lags can be set by the user. TSL provides the Lags it tested, the Test statistic, and the
corresponding Probability. In general, a Probability < 0.05 is considered a rejection of the
null hypothesis:

H0 : Standardized residuals are independently distributed.

7.4.7 Outlier and break diagnostics

Outlier and Break detection, see also Chapter 5.1.9 and Case study 12.3 is based on Auxil-
iary residuals, see Durbin and Koopman (2012) p59. Outliers and breaks above a provided
threshold can be printed to screen.

7.4.8 Model fit

Model fit is printed to the Text output page after each model estimation. This output can
also be printed by selecting the Model fit option.

43 7.5. SAVE COMPONENTS

7.5 Save components
All components from the Individual, Composite, Residuals, and Auxiliary tabs on the Graph
page can be saved to the file system. Click the Save components button in the upper right
corner of the Graph page. Select the components you want to save or click the Select all
components button to select all components, followed by Save selected.

Chapter 8

Forecasting

The Forecasting page of TSL with the Nile data as illustration looks like Figure 8.1.
The Forecasting page can be reached by using the button as shown on the left.
Forecasting a time series is often of great interest for users because being able to

say “something” about the future can be of great value. Forecasts need to be evaluated in
some way. This is usually done by loss functions which we will discuss later in this section.
A forecast comparison between different models and for different forecast horizons can be
performed on the Model comparison page, see Chapter 10.

Figure 8.1
Forecasting page of TSL

45 8.1. FORECAST COMPONENTS

8.1 Forecast components
The available components to forecast are a subset of the components that can be plotted on
the Graphics page with one exception, Y forecast. For all models, Total signal and Y forecast
are exactly equal, except for their confidence intervals. Note that confidence intervals are
only available for State Space models. The difference between confidence intervals for Total
signal and Y forecast has to do with the extra error term that State Space models possess,
see Appendix B for more background. As a result, confidence intervals for Y forecast are
wider than for Total signal.

You can choose between one-step-ahead forecasting and multi-step-ahead forecasting.
The difference is how many steps we forecast ahead standing at the end of the Training
sample (time point t2). For one-step-ahead forecasting, we make a forecast one step ahead,
update the data and go to the next time point (t2 + 1) and the forecasting process repeats.
For multi-step-ahead forecasting, we stay at time t2 and forecast 1-step, 2-step, 3-step,. . .,n-
step-ahead. If the Validation sample has size 0, meaning the Training sample is 100% of your
data, one-step-ahead forecasting and multi-step-ahead forecasting are the same.

For the Local Level model, the multi-step-ahead forecasts form a straight line because we
cannot update our model anymore with new data, see also Figure 8.2. For models with, for
example, seasonal components, multi-step-ahead forecasts are no longer straight lines since
these models have dynamics regardless if new data comes in. We see examples of this in
Chapter 12.

Figure 8.2
Multi-step-ahead forecast for Local Level model

CHAPTER 8. FORECASTING 46

The difference between the observations in the Training sample and the forecasts can be
quantified into a loss function. If Y forecast or Total signal are selected, three loss functions
are added to the right side of the plot area. The loss functions are Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). A
more substantial evaluation of Forecasting performance is provided on the Model comparison
page, see also Chapter 10.

8.2 Additional options
Some more plot options are available on the Forecast page. We discuss them here.

8.2.1 Plot confidence bounds

See Section 7.3.1

8.2.2 Select model / time series

See Section 7.3.3

8.2.3 Plot options

Click the spinboxes to expand or contract the part of the Training and Validation sample that
is displayed on screen. For line colors see Section 7.3.4.

8.3 Load future
The load future option is for users who have knowledge about the future that they want to
incorporate in the model forecasts. This is mainly used for explanatory variables but can be
used for the y variable as well. If you make multi-step-ahead forecasts and explanatory vari-
ables are included in the model, the explanatory variables need to be forecasted as well. This
is the case, for example, on the model comparison page where forecasts are made up to 50
steps ahead. TSL forecasts the explanatory variables with the method selected as described in
Section 5.1.8.3. If you do not want TSL to forecast the explanatory variables you can specify
them yourselves by loading a dataset with the load future option.

Important: The loaded future data is matches with the main data set by means
of comparing column names. Only if column names of the loaded future data
matches the ones (can also be a subset of the column names) in the main data

set, is the future data taken into account.

47 8.4. SAVE FORECAST

8.4 Save forecast
See Section 7.5

8.5 Output forecast
See Section 7.5

Chapter 9

Text output

Written output is provided on the Text output page of TSL which can be reached
by using the button as displayed on the left. Written output can be anything from
optimization results, warnings, to output of diagnostic tests. An example of text

output printed by TSL during and after the estimation of the Local Level model and the Nile
data is shown in Figure 9.1.

Figure 9.1
Text output for the Local Level model

Just like plot areas, the Text output are can be undocked with the buttons in the bottom
right of the screen. This way the text area can be placed outside of the main TSL window on
for example a different monitor.

Chapter 10

Model comparison

The Model comparison page of TSL can be reached by using the button as dis-
played on the left. It is an import page because forecasting performance of different
models can be compared with each other. For each model, the page shows forecast

errors up to h = 50 time periods ahead. This is useful to see if a model performs well on, for
example, shorter or longer forecast horizons.

Important: The Model comparison button is only visible if you provided a Vali-
dation sample. If you would have chosen to use all data for the Training sample
(t2 = T), loss calculations cannot be made since forecasts cannot be compared

with actual values in the Validation sample.

10.1 Loss calculation procedure
We compare models based on several Loss functions, for example, the Root Mean Squared
Error (RMSE). For the RMSE we have

RMSEh =

√√√√√ 1
p− h+ 1

t2+p−h∑
t=t2

(yt+h − ŷt+h|t)2, (10.1)

with p the length of the Validation sample, t2 the length of the Training sample, h the length
of the forecast horizon, and ŷt+h|t the forecast for observation yt+h given the information up
to time t.

Assume we estimated a model for a time series with length T = 400 and we took a ratio
of 80%/20% for Training and Validation sample. This means we have a Training sample with
length t2 = 320. By repeatedly making 1-step-ahead, 2-step-ahead,, 50-step-ahead
forecasts, according to Equation (10.1), we make a total of 80 × 1-step-ahead forecasts, 79
× 2-step-ahead forecasts, 78 × 3-step-ahead forecasts,, 31 × 50-step-ahead forecasts.
By obtaining many forecasts we have a robust way of comparing models with each other based

CHAPTER 10. MODEL COMPARISON 50

on forecasting performance.

10.2 Start loss calculation
Select the model and time series from the drop-down menus for which you want to calculate
forecast losses. Click the Start loss calculation button in the top right corner of the screen
to start the calculation. When the loss calculation is finished, the selected model shows up
in the User defined models section in the top left of the screen. Select the newly appeared
check box and the corresponding losses appear in the plot area for the loss functions selected
under Loss functions. Repeat the procedure for other models and/or compare the results with
losses from the Naive forecast methods.

• Last observation. This model always takes the last observation from the Training sample
as forecast for the forecast horizons.

• Average of last X observations. This model takes the average of the last X observation
from the Training sample as forecast for the forecast horizons.

• Last observation X periods back. This model takes a block of last X observations and
uses that block repeatedly as forecasts till the end of the forecast horizon is reached.
For example with X = 4 we obtain a block of observations yT −3, yT −2, yT −1, yT . The
forecast for yT +1, yT +5, yT +9, . . . is yT −3, the forecast for yT +2, yT +6, yT +10, . . . is yT −2,
etc.

Finally, print the selected model loss combinations to the Text output page by clicking the
Print model comparison button.

Chapter 11

Batch module

The Batch module of TSL is designed to program TSL rather than go through all
modelling steps and menus manually. This way, TSL can be used to automate the
modelling and forecasting of time series. A Batch program needs to be written

only once and can then be used each time again to assign tasks to TSL. It also allows you to
schedule TSL, for example to run the Batch program every morning at 07:00 or to run the
Batch program repeatedly every 60 seconds.

Example Batch programs can be found in the “batch programs“ folder of the installation
directory

Figure 11.1
Batch module with example program

Chapter 12

Case studies

12.1 Nile data
In this first case study we illustrate the fundamentals of TSL using observations from the river
Nile. The data set consists of a series of readings of the annual flow volume at Aswan from
1871 to 1970. The Nile dataset is part of any TSL installer file and can be found in the data
folder located in the install folder of TSL. Many time series concepts can be explained by the
Nile time series alone.

12.1.1 Loading data

Let’s start the modelling process. First go to the Database page of TSL by clicking the
Database button. On this page we load, visually inspect, and prepare our data for the mod-
elling process. The data set is loaded and selected from the file system by pressing the Load
data button or by selecting Load data from the File menu. Locate the file Nile.csv in the data
folder of the TSL install folder.

Important: The data set should be in column format with headers. The format
of the data should be *.xls(x), or *.csv, *.txt with commas as field separation. The
program (purposely) does not sort the data which means that the data should be

in the correct time series order before loading it into the program.

After loading, click on the name Nile in the database field. If you click the arrow bar at
the right side of the screen, a new area unfolds which shows us Data characteristics of the
selected time series. It shows that the Nile time series has a length of T = 100 observations
with 0 missing values, among other characteristics. The TSL window should look like Figure
12.1.

The highlighted variable Nile also appears in the Select dependent variable drop-down
menu. This is the so-called y-variable of the time series equation and it is the time series
variable of interest, i.e. the time series variable you want to model, analyse, and forecast.

53 12.1. NILE DATA

Figure 12.1
Data inspection and preparation page

Optionally, a time series axis can be specified. The program’s algorithm tries to auto-detect
the time axis specification (e.g. annual data, daily data) from the first column of the data
set. In the case of the Nile data illustration, it finds an annual time axis specification. If
auto-detection fails, the program selects the Index axis option which is just a number for each
observation, 1,2,3,..., see also Chapter 3.1.3.

12.1.2 Pre-built models

Click on the Pre-built models button in the button bar at the left of your screen. Switch on
the Local Level model. Make sure this is the only selected model, see also the Model selection
summary in the blue pane in the bottom of the screen. Select an 100%/0% ratio for Training
and Validation sample. The settings are shown in Figure 12.2. Click the Process Dashboard
button which is the green arrow located at the bottom right of your screen. After pressing
this button, two things happen:

• TSL estimates the selected models and prints results to the Text output page. The
results are: progress results from the optimizer and model fit of the selected models.

• Once processing of the selected models is complete, TSL plots the information it found
and shows the Graphics page.

CHAPTER 12. CASE STUDIES 54

Figure 12.2
Model selection page with Local Level model selected

12.1.3 Graphical output

After processing the selected models, TSL automatically takes you to the Graphics page.
Components, or combinations of components, can be easily plotted and removed from the
plot by checking or unchecking the tickboxes in the top left corner of the page. You can add
subplots as well to create a grid of plots.

Click on a (sub)plot to activate it. Notice that by clicking on a subplot, the check-
boxes in the top left of the window correspond to the current selection of lines in
the subplot. If not all checkbox settings correspond with the lines in the subplot,

switch tabs to show the rest of the selection.

To see what is meant by the text above: switch from Smoothing to Filtering. You now see
that the Level checkbox is unchecked because the level that is currently plotted corresponds
to the Smoothed level and not the Filtered level. The reason the Smoothed level in the plot
does not automatically switch to a Filtered level on changing is that you sometimes want to
compare Smoothed, Filtered, and Predicted components in one plot. If you click on level, the
resulting graph should look like the one in Figure 12.3.

55 12.1. NILE DATA

For State Space models, confidence intervals can be included in the plot as well. A major benefit of
State Space models is that the error bounds can easily be obtained. More on State Space models in
Appendix B. You can also choose between Predicting, Filtering, and Smoothing by changing the type
in the top left corner. The difference between Smoothed, Filtered, and Predicted components has to
do with the subset of the data used to determine the statistical properties of the components, i.e. the
data up to time t−1 (forecasting), the data up to time t (filtering) or the whole data set (smoothing),
see also Appendix B.

Figure 12.3
Time Series Lab Graph page

12.1.4 Missing data

We continue this Case study with a version of the Nile data with missing values to illustrate
one of the many advantages of using TSL, namely the capability of easily handling missing
values. Missing values in time series can occur due a variety of reasons and for some time
series algorithms it is problematic.

Missing data can cause problems for some time series algorithms. These algo-
rithms often revert to deleting the missing values or the missing values are filled
with certain values. In TSL there is no need to rely on such drastic measures.

Missing values are part of time series analysis and they should be handled in a correct manner.

CHAPTER 12. CASE STUDIES 56

Go back to the Database page of TSL and select the Nile missing time series by clicking
on the name. You see that the Data characteristics are updated by selecting the new time
series. It shows us 40 missing values, among other characteristics. The TSL window should
now look like Figure 12.4.

Figure 12.4
Data inspection and preparation page

We will estimate and compare two models with each other. Click on the Pre-built models
button in the button bar at the left of your screen and switch on, the models Exponential
Smoothing and Local Level. Make sure these are the only selected models, see also the Model
selection summary in the blue pane in the bottom of the screen. Select an 100%/0% ratio for
Training and Validation sample and click the Process Dashboard button which is the green
arrow located at the bottom right of your screen.

12.1.5 Comparing results

Go to the Graphics and diagnostics page and click the Clear all button (eraser icon, bottom
right) to start with a clean graph window. From the Individual tab select Y data to plot the
Nile missing time series. From the drop-down menu select the Exp Smoothing model and
plot the Total signal from the Composite tab. Next, from the drop-down menu select the
Local Level model and make sure the Type in the top left corner says Predicting, followed
by plotting the Total signal from the Composite tab. The resulting graph should look the
one in Figure 12.5. We see that the Local Level model reacts stronger to changes in the time
series after missing values periods.

57 12.1. NILE DATA

Figure 12.5
TSL Graph page

We can also see the difference in model fit expressed in numbers. Go to the Text output
page where at the end of the estimation, model fit of the selected models is summarized.
Looking at in-sample MSE we see that the loss of the Local Level model is lower.

Variable: Nile_missing
Model(s):
TSL005 Exp Smoothing
TSL006 Local Level

TSL005 TSL006
Log likelihood - -380.01
Akaike Information Criterion (AIC) - 766.02
Bias corrected AIC (AICc) - 766.44
Bayesian Information Criterion (BIC) - 772.30
in-sample MSE 23735.33 23069.80
... RMSE 154.06 151.89
... MAE 119.86 118.60
... MAPE 14.06 13.70
Sample size 100 100
Effective sample size 99 99
* based on one-step-ahead forecast errors

If you want to compare models and conclude something like “model A is better than model
B”, it is important to note that only looking at in-sample (Training sample) model fit can

CHAPTER 12. CASE STUDIES 58

be misleading. It is often a good idea to take forecast performance into account as well. If
model A performs better on both model fit and forecast performance, it is a good indication
of model A being preferred over model B. We see examples of comparing forecast performance
in other Case studies.

The forecasts of both our models can be visually inspected on the Forecasting page.
Figure 12.6 plots the forecasts of both model in one graph. Since no new data is coming in,
the forecasts are just straight lines but the level (height) of the lines differ per model. Note
that the local level model is not just a theoretical model, it has practical value as well. For
example for inflation modelling, the local level model is a strong contender. We will see more
complex forecasting patterns in other case studies.

Figure 12.6
TSL forecast page

12.1.6 Outliers and Structural breaks

Intervention analysis, also called anomaly detection, is an important part of time series analysis.
We distinguish two types of anomalies, Outliers and Structural breaks. For example, early
warning systems rely on outlier and break detection. Could a catastrophic event have been seen
in advance? Take for example sensor readings from an important piece of heavy machinery.
The breaking down of this machine would cost a company a lot of money. If anomalies were
detected in the sensor reading, preventive maintenance might have saved the company from
a break-down of the machine.

59 12.1. NILE DATA

Intervention variables are dummy (or indicator) variables which are used to take account
of outlying observations and structural breaks. These data irregularities are usually thought
of as arising from a specific event, for example a strike in the case of an outlier or a change
in policy in the case of a structural break. An outlier can be thought of as an unusually
large value of the irregular disturbance at a particular time. It can be captured by an impulse
intervention variable which takes the value one at the time of the outlier and zero elsewhere.
A structural break in which the level of the series shifts up or down is modelled by a step
intervention variable which is zero before the event and one after. Alternatively it can be
modelled in exactly the same way by adding an outlying intervention to the level equation. In
other words the break is identified with an unusually large value of the level disturbance.

TSL is able to propose a set of potential outliers and structural breaks for time series.
It is an effective multi-step procedure based on the auxiliary residuals, see also Harvey and
Koopman (1992) for details. First the selected model is estimated and the diagnostics are
investigated. Then a first (larger) set of potential outliers and trend breaks are selected from
the auxiliary residuals. After re-estimation of the model, only those interventions survive
that are sufficiently significant. After the automatic selection, the results are reported. All
considered outliers and breaks are kept in the intervention dialog and they can be deleted
from the model or added to the model.

The Nile time series has some interesting features with regard to Intervention analysis.
To see this, go back to the Database page and select the Nile time series again without
missing values. Next, go to the Build your own model page and select a time-varying level
and time-varying slope. These two model components correspond to a model with the name
Local Linear Trend model. On top of that, select Intervention variables with the automatic
setting. Next, go to the Estimation page, make sure the sample starts at t = 1 and ends at
t = 100 and click the green Estimate button. Once TSL is done estimating, you should see
the graph as presented in Figure 12.7.

We see from Figure 12.7 that TSL finds a structural break and an outlier. We can also
inspect these in more detail by looking at the Text output page where we see

Intervention coefficients:

Beta Value Std.Err t-stat Prob
beta_outlier_1913-01-01 -389.4 123.92 -3.143 0.0022
beta_break_1899-01-01 -265.5 43.67 -6.079 2.4458e-08

TSL finds the location of the structural break at 1899 which is very plausible since the year
1899 corresponds to the building of a dam at Aswan.

Interestingly, the addition of the outlier and structural break remove certain dynamics from
the data which we can see from the straight lines in the graph which are the result of the
(close to) zero variances from the Level and Slope component.

CHAPTER 12. CASE STUDIES 60

Figure 12.7
Graph page with structural break in Nile data

12.1.7 Further exploration

• On the graph page, plot the Autocorrelation Function (ACF) of the Predicted stan-
dardized residuals for the Local Level model. Are all plotted lags within the confidence
bounds?

• Performing diagnostic tests can be done via the Print diagnostics button located on
the Graph page. Can you print the Residual diagnostics for the Exponential Smoothing
model? Are all Probabilities for the Normality test above 0.05? See also Section 7.4.6.

• Outliers and structural breaks can be added (and removed) manually to (from) the
model by selecting the Manual option of the Intervention variables. Estimate a Local
Level model with only the structural break.

61 12.2. GASOLINE CONSUMPTION

12.2 Gasoline consumption
The data for this case study is weekly data on US finished motor gasoline product supplied (in
thousands of barrels per day) from February 1991 to May 2005. It is part of the R package
fpp2 and available from the EIA website. It is also bundled with the installation file of TSL.
The dataset is used in the TBATS paper of De Livera et al. (2011). Furthermore, the dataset
is analysed by R.J. Hyndman on his blog.

In Figure 12.8, the gasoline dataset is loaded into TSL and plotted. The upward trend and
seasonality pattern is clearly visible in the data. The Data characteristics area shows T = 745
observations.

Information: On the Database page, you can copy the contents of the Data
characteristics pane to the clipboard by right-mouse clicking the area and select-
ing Copy contents or by selecting the text and clicking Ctrl-c.

Figure 12.8
TSL Database page with Gasoline dataset loaded

12.2.1 Local Linear Trend model

The seasonal pattern of this time series is important but for illustrative purposes, we start
our analysis without a seasonal component and select the Local Linear Trend model which is

https://cran.r-project.org/web/packages/fpp2/fpp2.pdf
https://www.eia.gov
https://robjhyndman.com/hyndsight/forecasting-weekly-data/

CHAPTER 12. CASE STUDIES 62

a model with a trend component but no seasonal component. Select the Local Linear Trend
model model on the Pre-built models page. Alternatively, you can go to the Build your own
model page and select a time-varying level and a time-varying slope.

Our time series consist of a total of 745 observations (February 1991 to May 2005).
For this case study we select the first 484 observations as Training sample and leaving 261
observations as Validation sample. Drag (and/or click) the sample bar on the Pre-built models
page to set a Training sample of size 484, or alternatively, set the start and end of the Training
sample to 1 and 484 on the Estimation page.

Click the Process Dashboard button on the Pre-built models page or the Estimate button
on the Estimation page. TSL estimates the model and if you go to the Text output page you
see a green colored message informing us that:

All selected models and series were estimated successfully

Furthermore, at the bottom of the Text output page we find the Model fit. For the current
model this is:

Variable: gasoline
Model: TSL003 Local Linear Trend

TSL003
Log likelihood -3485.355
Akaike Information Criterion (AIC) 6978.710
Bias corrected AIC (AICc) 6978.794
Bayesian Information Criterion (BIC) 6995.439
in-sample MSE 1.1177e+05
... RMSE 334.317
... MAE 268.147
... MAPE 3.480
Sample size 484
Effective sample size 482
* based on one-step-ahead forecast errors

We report these numbers here to show the improvement of adding a seasonal component
later. The graphical output of the current model is shown in Figure 12.9. With a smoothed
level through the data, the seasonal pattern is even better visible. The triangular pattern in
the level will appear later as well when we plot the forecasting performance of the model.

Let’s assess the forecast performance of the model by going to the Model comparison
page. This page can be viewed by clicking the Model comparison button in the button bar
on the left of your screen. Note that this button is only visible when a Validation sample is
specified. Click on the green Start loss calculation button in the top right of the window.
Under User defined models, a new check-button appears which you should tick. The resulting
TSL screen is shown in Figure 12.10. The pyramid shaped loss line in Figure 12.10 can be
explained by the fact that a forecast from the Local Linear Trend model is a straight line

63 12.2. GASOLINE CONSUMPTION

Figure 12.9
Graph page of TSL with Gasoline dataset

that is upward sloping for our data set. The forecasts do not take into account the seasonal
pattern of the data so when the data is at the highest or lowest point in the seasonal cycle, the
loss is the highest. Let’s verify this. Go to the Forecasting page and select multi-step-ahead
in the top left corner. Navigate to Plot options and Show forecast 150 periods ahead. The
resulting window should look the one presented in Figure 12.11.

12.2.2 Basic Structural Time Series model

It is time to introduce a seasonal component. We go to the Build your own model page and
select a time-varying level, a time-varying slope, and a time-varying seasonal. The resulting
model is called the Basic Structural Time Series model by Harvey (1990). Set the Seasonal
period length to 365.25/7 ≈ 52.179 (weekly data taking leap years into account) and a Num-
ber of factors equal to 22.

Information: Seasonal period length is the number of time points after which the
seasonal repeats. This can be a fractional number. For example, with daily data,
specify a period of 365.25 for a seasonal that repeats each year, taking leap years

into account. Number of factors specifies the seasonal flexibility. Note that a higher number
is not always better and parsimonious models often perform better in forecasting.

CHAPTER 12. CASE STUDIES 64

Figure 12.10
RMSE loss Local Linear Trend model and Gasoline dataset

RMSE loss for the Local Linear Trend model and the Gasoline dataset for a forecast horizon of h=50.

The Build your own model page should look like the one in Figure 12.12. Estimate the
model and go to the Text output page. We see that the model fit is improved by adding the
seasonal component.

Variable: gasoline
Model: TSL004

TSL004
Log likelihood -3218.400
Akaike Information Criterion (AIC) 6532.799
Bias corrected AIC (AICc) 6543.613
Bayesian Information Criterion (BIC) 6733.539
in-sample MSE 1.0083e+05
... RMSE 317.539
... MAE 252.502
... MAPE 3.244
Sample size 484
Effective sample size 430
* based on one-step-ahead forecast errors

65 12.2. GASOLINE CONSUMPTION

Figure 12.11
Forecasts for h=150 time points ahead

A large improvement in forecasting performance, compared to the Local Linear Trend
model, can be seen if we start (and plot) the loss calculation on the Model comparison page.
This shows how important it can be to model the seasonal pattern of a time series. We will
see an example of multiple seasonal patterns in a time series which makes the correct handling
even more important. Plotting both RMSE losses leads to Figure 12.13. Next, go back to
the Build your own model page and lower the number of factors of the seasonal component.
Parsimonious models often perform better in forecasting. A better performing number of
factors is 7 although other values might be even better for forecasting. A model comparison
between 22 and 7 factors is made in Figure 12.14. The loss corresponding to the model with
7 factors is lower than the one that is presented in Figure 2 of De Livera et al. (2011) which
is obtained with the TBATS package.

12.2.3 Further exploration

• Estimate the model with a Level, Slope, and Seasonal with period length 52. Verify
that by not taking the leap year into account (52.0 instead of 52.179), forecasts become
worse.

• Forecasts can further be improved by adding explanatory variables. In TSL you can do
this with the click of a couple of buttons on the Model setup page. Let us know which
variables you have used to boost the forecast precision for the gasoline dataset.

CHAPTER 12. CASE STUDIES 66

Figure 12.12
Component selection page

Figure 12.13
Forecast performance of LLT and Basic Structural model

67 12.2. GASOLINE CONSUMPTION

Figure 12.14
Forecast performance Basic Structural model

CHAPTER 12. CASE STUDIES 68

12.3 UK GAS consumption
The Energy data set that comes bundled with TSL has quarterly data on UK energy con-
sumption. The data set is good for illustrative purposes since the data exhibits time-varying
seasonality and the presence of strong outliers.

Load the Energy data set and select variable ofuGASl where the trailing l means that
logarithms were taken from the original data. The trend is upwards with some increase in the
rate of growth in the years following the introduction of cheaper natural gas from the North
Sea at the end of the 1960s.

12.3.1 Energy consumption without intervention variables

Select a time-varying level, time-varying slope, and time-varying seasonal on the Build your
own model page. Since the data is quarterly data, we have a seasonal period of s = 4. Go to
the Estimation page and click the Estimate button. After TSL is finished with the Estimation,
go to the Text output page where you find (partially) the following output:

--------------------------------- PARAMETER SUMMARY ---------------------------------

Variance of disturbances:

Variance type Value q-ratio
Level variance 3.7108e-07 2.2775e-04
Slope variance 7.4626e-06 0.0046
Seasonal variance 8.3846e-04 0.5146
Irregular variance 0.0016 1.0000

Seasonal short properties:

Period Value Std.Err t-stat Prob
1 0.6082 0.0804 7.562 1.7114e-11
2 -0.0884 0.0766 -1.153 0.2514
3 -0.6695 0.0658 -10.167 0.0000
4 0.1497 0.0573 2.611 0.0104

Value Prob
Seasonal chi2 test 79.15 4.6816e-17

--------------------------------- MODEL FIT ---------------------------------

Model: TSL001
variable: ofuGASl

TSL001
Log likelihood 83.1412

69 12.3. UK GAS CONSUMPTION

Akaike Information Criterion (AIC) -148.2824
Bias corrected AIC (AICc) -146.4456
Bayesian Information Criterion (BIC) -124.1432
in-sample MSE 0.0108
... RMSE 0.1039
... MAE 0.0696
... MAPE 1.2493
Sample size 108
Effective sample size 103
* based on one-step-ahead forecast errors

Under Seasonal short properties we see the average value of the seasonal periods. The sea-
sonal component is a component that evolves around zero. The periods of the seasonal
tell us that gas consumption is on average higher in Q1 and Q4 (> 0) and lower in Q2
and Q3 (< 0) which is not surprising due to temperature effects. An important statistic is
the Seasonal chi2 test which is the combined effect of the seasonal component. The indi-
vidual components are not all statistically different from zero (p-value of Q2 is 0.2514) but
the total effect of the seasonal component is strongly significant with a p-value of 4.6816e-17.

Next, go to the Graph page and construct a figure with four subplots (use add subplot
button bottom right) with the following content:

• Top left: y data and smoothed level
• Top right: smoothed seasonal
• Bottom left: smoothed residuals
• Bottom right: y data and Total signal, zoomed in on the period 1968 − 1973.

The figure should look like the one in Figure 12.15. The first graph shows the trend; there
is a strong increase in gas usage with the introduction of natural gas from the North sea in
the early 1970s. The seasonality is shown in the graph in the top right corner in terms of its
multiplicative effect on the trend. The greater dispersion in the seasonal pattern over time is
due to a higher proportion of gas being used for heating as usage increased in the 1970s. The
final graph shows the seasonally adjusted series produced by fitting the structural time series
model. Furthermore, two spikes are present in the residuals around 1970 as can be seen in
the bottom left panel. The Total signal (bottom right) tracks the data accurately except for
a discrepancy in 1970. Let’s investigate the residuals further. On the Graph page, press the
Print diagnostics button and select Outlier and break diagnostics and click Continue. TSL
prints the following on the Text output page.

Diagnostic output for:
model: TSL001
variable: ofuGASl

Outlier and break diagnostics

CHAPTER 12. CASE STUDIES 70

Figure 12.15
Basic Structural model for energy consumption

The figure shows the result of fitting a model with time-varing level, slope, and seasonal s = 4. The top left
panel show the data and the smoothed level. The top right panel shows the smoothed seasonal. The bottom
left panel shows the smoothed residuals. The bottom right panel shows the data and the total signal, zoomed
in on the period 1968 − 1973.

Values larger than 3.00 for Irregular residual:

Period Value Prob
1970-07-01 4.287 1.9773e-05
1970-10-01 -3.972 6.4463e-05

No values larger than 3.00 for Level residual:

No values larger than 3.00 for Slope residual:

Outliers are identified from large Irregular residuals and structural breaks from Level resid-
uals. We see that the outlier periods are identified as 1970-07-01 (Q3) and 1970-10-01 (Q4).

12.3.2 Energy consumption with intervention variables

We use the same model as in the last section and add Intervention variables to the model,
i.e. switch on Intervention variables on the Build your own model page and select the Auto-
matically option. Estimate the model.

71 12.3. UK GAS CONSUMPTION

--------------------------------- PARAMETER SUMMARY ---------------------------------

Variance of disturbances:

Variance type Value q-ratio
Level variance 2.5186e-04 0.4572
Slope variance 5.2830e-06 0.0096
Seasonal variance 5.5081e-04 1.0000
Irregular variance 8.6844e-05 0.1577

Seasonal short properties:

Period Value Std.Err t-stat Prob
1 0.6116 0.0616 9.926 0.0000
2 -0.0862 0.0574 -1.500 0.1367
3 -0.6579 0.0479 -13.739 0.0000
4 0.1325 0.0411 3.223 0.0017

Value Prob
Seasonal chi2 test 197.0 1.8447e-42

Intervention coefficients:

Beta Value Std.Err t-stat Prob
beta_outlier_1970-07-01 0.4024 0.0530 7.585 1.6711e-11
beta_outlier_1970-10-01 -0.3372 0.0530 -6.357 6.0066e-09

--------------------------------- MODEL FIT ---------------------------------

Model: TSL002
variable: ofuGASl

TSL002
Log likelihood 108.4862
Akaike Information Criterion (AIC) -194.9724
Bias corrected AIC (AICc) -192.2224
Bayesian Information Criterion (BIC) -165.4690
in-sample MSE 0.0095
... RMSE 0.0976
... MAE 0.0659
... MAPE 1.1722
Sample size 108
Effective sample size 101
* based on one-step-ahead forecast errors

We see that TSL correctly finds the outliers that were presented at the end of the last
section and that the corresponding probabilities are closed to zero meaning the outliers are

CHAPTER 12. CASE STUDIES 72

strongly significant. There is another way of assessing the contribution of the added outliers
and that is by performing a likelihood ratio test (LR test) between the model with and without
the outliers. In a LR test you compare two log-likelihood values and test if the difference is
statistically significant based on a number of degrees-of-freedom. The null hypothesis of the
LR test is:

H0 : the smaller model provides as good a fit for the data as the larger model

with the test statistic of the LR test given by

−2 [ℓ(θ0) − ℓ(θ1)]

where ℓ(θi) is the log-likelihood of model i. The LR statistic for our two likelihoods is 50.68
and the statistic is Chi-square distributed with degrees of freedom equal to the difference
in the number of parameters for the two models, which is 2 in our case (2 extra outlier
variables). The probability belonging to our LR statistic is 9.8416e-12 so we strongly reject
our null hypothesis.

A similar graph like Figure 12.15, with the outliers added, is presented in Figure 12.16.
Compared to Figure 12.15, we see some important differences. One, the spikes in the residuals
are gone. Two, the discrepancy in 1970 in the Total signal is completely gone.

73 12.3. UK GAS CONSUMPTION

Figure 12.16
Basic Structural model + Interventions for energy consumption

The figure shows the result of fitting a model with time-varing level, slope, seasonal s = 4, and intervention
variables. The top left panel show the data and the smoothed level + interventions. The top right panel
shows the smoothed seasonal. The bottom left panel shows the smoothed residuals. The bottom right panel
shows the data and the total signal, zoomed in on the period 1968 − 1973.

CHAPTER 12. CASE STUDIES 74

12.4 El Nino
El Niño is a well-known phenomenon in climate science and is characterized by higher than
average sea surface temperatures in the central and eastern equatorial Pacific Ocean. It has a
substantial impact on the climate in many parts of the world. Hence, it has been given much
coverage in the popular media, and it is the subject of extensive research in the scientific
world. El Niño typically causes changes in weather patterns related to temperature, pressure
and rainfall. Thus, a warm event may not only have a negative impact on local economies,
but can also have negative consequences for public health, as in some regions these changes
increase substantially the risk of water-borne and/or vector-borne diseases. Given its huge
impact particularly on some developing countries bordering the Pacific Ocean, it is self-evident
that a timely forecast of the next El Niño event is important. Much scientific research has
been devoted to the development of forecasting methods for El Niño. The oscillation is
characterized by an irregular period of between 2 and 7 years. Currently, forecasts are issued
regularly for up to three seasons in advance, but the long term of more than one year ahead
forecasts remain a real challenge. At the same time, one of the two main theories about the
physics underlying El Niño implies that it may be a self-sustaining climatic fluctuation that
is quasi-periodic, with several dominant peaks in its spectrum, the main one being at about
every 4-5 years and a secondary at about 2 years. This suggests that it may be predictable
at lead times of several years, see also Li et al. (2020).

In this Case study we show that we can make accurate forecasts with TSL. We build up
the model in several steps and show increases in training sample model fit and validation
sample forecast performance in each step.

12.4.1 Loading and inspecting the data

Load and select the elnino.csv data set from the file system by pressing the Load data button
or by clicking File ▶ Load data.

Our series of interest is the EN3.4 time series. This is a time series of monthly temperature
values which is referred to as the Niño3.4 time series and which is the area-averaged sea surface
temperature in the region (5 ◦ N - 5 ◦ S, 170 ◦ W - 120 ◦ W). In this area the El Niño events
are identified, see also the discussion in Bamston et al. (1997). The National Centers for
Environmental Information (NOAA) defines an El Niño or La Niña event as a phenomenon
in the equatorial Pacific Ocean characterised by a five consecutive 3-month running mean of
sea surface temperature (SST) anomalies in the Niño 3.4 region that is above (below) the
threshold of +0.5◦C (-0.5◦C)1.

In our empirical study, the Niño3.4 time series, denoted by yt, is the variable of interest.
The variable is observed from January 1982 to the end of 2015 with 34 years of data and 407
monthly observations. For this period, observations for 24 predictor variables are available
which consist of physical measures of zonal wind stress and sea temperatures at different

1Details can be found on the website of NOAA, https://www.ncdc.noaa.gov/

75 12.4. EL NINO

depths in the ocean and at different locations. Petrova et al. (2017) give a detailed account
of the selection of these variables. For graphs, acronyms and references to data sources for
all time series, we refer to Appendix B of Li et al. (2020).

Click the vertical arrow bar on the right of the screen to see additional information about
the selected time series. The Statistical tests panel shows the result of the Augmented
Dickey-Fuller test and KPSS test. The ADF test (with intercept) strongly implies that the
null hypothesis of a unit root is rejected. Based on the KPSS test, we cannot reject the null
hypothesis of trend stationarity which suggests that the Niño3.4 time series is generated from
a stationary process around a fixed mean.

12.4.1.1 Periodicity in the time series

The spectral density is a very useful plot to get an idea about cyclical patterns in the time
series. Click on the spectral density button in the bottom right corner of the graph and change
the number of lags to 100 in the spinbox under other settings. The screen should like to the
one in Figure 12.17. From the sample spectrum, we can identify four peaks which correspond

Figure 12.17
Spectral density of the EN3.4 time series

to periods of approximately 6, 12, 18, and 51 months. The 6 and 12 month periods correspond
to the monthly seasonality and the 18 and 51 month periods will be modelled with cycles.

CHAPTER 12. CASE STUDIES 76

12.4.2 Model: level + slope + seasonal

We build a model with a time-varying level, time-varying slope, and time-varying seasonal.
Select these components on the Build your own model page. The cycles come at a later stage.
After selecting the components, go to the Estimation page and change the end of the sample
to 324 (27 years) which leaves 83 months as Validation sample. Click the Estimate button
and after TSL is done estimating, go to the Text output page where we see:

--------------------------------- PARAMETER SUMMARY ---------------------------------

Variance of disturbances:

Variance type Value q-ratio
Level variance 0.0872 1.0000
Slope variance 0.0000 0.0000
Seasonal variance 0.0000 0.0000
Irregular variance 8.4884e-05 9.7383e-04

State vector at period 2008-12-01:

Component Value Std.Err t-stat Prob
Level 26.2030 0.0576 454.9773 0.0000
Slope -0.0032 0.0164 -0.1922 0.8477

--------------------------------- MODEL FIT ---------------------------------

Model: TSL006
variable: EN3.4

TSL006
Log likelihood -95.6977
Akaike Information Criterion (AIC) 221.3954
Bias corrected AIC (AICc) 222.9539
Bayesian Information Criterion (BIC) 278.1066
in-sample MSE 0.1042
... RMSE 0.3229
... MAE 0.2526
... MAPE 0.9364
Sample size 324
Effective sample size 311
* based on one-step-ahead forecast errors

The Variance of disturbances show something interesting. We have two of the four variances
estimated at zero. A value of zero for a variance indicates that the corresponding component
is deterministic. If this is the case, a standard regression type significance test can be carried
out on the corresponding component in the state. If it is not significantly different from zero,

77 12.4. EL NINO

it may be possible to simplify the model by eliminating that particular component. Since
the Slope component has a variance of zero and the t-stat for the Slope component at time
2008 − 12 − 01 has a value of -0.1923 with corresponding p-value of 0.8477, we can safely
remove the Slope component from the model.

De-select the Slope component on the Build your own model page and re-estimate the
model. Go to the Text output page where we see:

--------------------------------- PARAMETER SUMMARY ---------------------------------

Variance of disturbances:

Variance type Value q-ratio
Level variance 0.0869 1.0000
Seasonal variance 0.0000 0.0000
Irregular variance 8.5250e-05 9.8151e-04

Seasonal short properties:

Period Value Std.Err t-stat Prob
1 -0.5053 0.0568 -8.901 0.0000
2 -0.3412 0.0567 -6.018 4.9541e-09
3 0.1496 0.0566 2.642 0.0087
4 0.7176 0.0566 12.680 0.0000
5 0.8035 0.0566 14.205 0.0000
6 0.6069 0.0565 10.732 0.0000
7 0.2026 0.0565 3.583 3.9341e-04
8 -0.1848 0.0566 -3.267 0.0012
9 -0.2843 0.0566 -5.023 8.5673e-07
10 -0.3200 0.0566 -5.650 3.6164e-08
11 -0.3806 0.0567 -6.712 9.0447e-11
12 -0.4640 0.0568 -8.172 7.5495e-15

Value Prob
Seasonal chi2 test 302.4 2.7131e-58

State vector at period 2008-12-01:

Component Value Std.Err t-stat Prob
Level 26.20 0.0575 455.7 0

--------------------------------- MODEL FIT ---------------------------------

Model: TSL007
variable: EN3.4

TSL007

CHAPTER 12. CASE STUDIES 78

Log likelihood -92.5260
Akaike Information Criterion (AIC) 213.0520
Bias corrected AIC (AICc) 214.4112
Bayesian Information Criterion (BIC) 265.9824
in-sample MSE 0.0990
... RMSE 0.3146
... MAE 0.2471
... MAPE 0.9165
Sample size 324
Effective sample size 312
* based on one-step-ahead forecast errors

Since the variance of the seasonal component is zero as well, we have a deterministic
seasonal which is a special case of the stochastic seasonal. Alternatively, the fixed seasonal
can be incorporated within Xt as it is usually done in regression models. If the seasonal
component is deterministic, either because it is specified to be ‘fixed’ at the outset or its
disturbance variance is estimated to be zero, a joint test of significance can be carried out on
the s - 1 seasonal effects. The test is essentially the same as a test for the joint significance
of a set of explanatory variables in regression. Under the null hypothesis of no seasonality, the
large sample distribution of the test statistic, denoted by Seasonal chi2 test in the output, is
χ2

s−1 distributed. The Prob value is the probability of a χ2
s−1 variable exceeding the value of

the test statistic. In the case of a stochastic seasonal, the joint seasonal test is also produced
although a formal joint test of significance of the seasonal effect is inappropriate. However,
the seasonal pattern is persistent throughout the series and when the seasonal pattern changes
relatively slowly, which is usually the case, the test statistic can provide a useful guide to the
relative importance of the seasonal. The formal definition of the test statistic is

a′P 1a

where a contains the estimates of the s - 1 seasonal effects at time T and P is the corre-
sponding variance matrix. From the text output we see that we have a strongly significant
seasonal pattern with a p-value of close to zero.

Finally, we have the Model fit which we will use to compare this model to other models.
The result above are for the Training sample but we need Validation results as well to be able
to thoroughly compare models with each other. Go to the Model comparison page and click
the Start loss calculation button in the top right corner of the screen. We refer to Chapter 10
for more information on loss calculations. After the loss calculations are made, an entry
appears under user defined models in the top left corner of the screen. Tick the box and also
tick the Last observation and Average of last 10 observations boxes to add two benchmark
models to the graph. The resulting graph should like like the one presented in Figure 12.18.
We can see that compared to the (simple) benchmark models, our model is performing better
for 1 to 18-step-ahead forecast but after that our model is not better anymore. For forecast
horizons of 19 and higher our model does not perform better than a very simple benchmark

79 12.4. EL NINO

Figure 12.18
Forecast losses for different lags

model. You should always compare your model to simple benchmark models and sometimes
you come to the conclusion that you cannot do better. But of course we do not end this Case
study here because we can improve further.

12.4.3 Model: level + seasonal + cycle1 + cycle2

We continue the modelling process by adding two cycles to our existing model on the Build
your own model page. Next, go to the Estimation page. Under the header Edit and fix
parameter values, all parameters that need can be estimated are summarized. For specific
model specifications we can fix parameters at certain values. If User defined starting values
is switched off (which is the default), an algorithm determines the starting values before
optimization. Note that the current values in the column Value are not the algorithmic
determined starting values. That process starts after the green Estimate button has been
clicked. For the majority of the cases, it is best to let TSL determine the starting values. An
exception to the above is the period length of the cycle which can be set as starting value
by the user regardless if User defined starting values is switched on or off. Since we target
a period of 18 months and a period of around 51 months (information obtained from the
spectral density), we set the starting value of the cycle 1 period to 18 and the cycle 2 period
to 51. Note that we always have cycle period 1 < cycle period 2 < cycle period 3. The
resulting screen should look like the one in Figure 12.19. Click the Estimate button and go
to the Text output page. Among other output, we have:

CHAPTER 12. CASE STUDIES 80

Figure 12.19
Estimation page of TSL

--------------------------------- PARAMETER SUMMARY ---------------------------------

Cycle properties:

Parameter type Cycle 1 Cycle 2
Variance 0.1708 0.7423
Period 17.8175 48.1535
Frequency 0.3526 0.1305
Damping factor 0.9622 0.9721
Amplitude 0.5931 0.9511

---------------------------- TRAINING SAMPLE MODEL FIT ------------------------------

Variable: EN3.4
Model: TSL008

TSL008
Log likelihood -53.8648
Akaike Information Criterion (AIC) 147.7296
Bias corrected AIC (AICc) 150.5019
Bayesian Information Criterion (BIC) 223.3445
in-sample MSE 0.0775
... RMSE 0.2783
... MAE 0.2146
... MAPE 0.7985
Sample size 324
Effective sample size 312
* based on one-step-ahead forecast errors

We see that the periods of the cycles are estimated around 18 months (1.5 years) and 48

81 12.4. EL NINO

months (4 years) which nicely corresponds with the information from the spectral density.
The model is also improved on training sample fit since we have a higher log likelihood and
lower in-sample losses.

Go to the Model comparison page and add the loss of the latest model to the graph. You
should see a loss line that is below all other loss lines meaning the latest model performs
better for all forecast horizons, see also Figure 12.20.

Figure 12.20
Forecast losses for different lags

12.4.4 Further exploration

• Verify that the ACF of the standardized residuals from the model with time-varying level,
slope, and seasonal (no cycles) has a cyclical pattern indicating that there is signal left
to explain.

CHAPTER 12. CASE STUDIES 82

12.5 Long memory
We continue the case studies with a record of the lowest annual water levels on the Nile
river during 622-1467 measured at the island of Roda, near Cairo, Egypt. The series is also
available till 1918 but has periods of many missing values which is not the topic of this case
study. For missing value analysis see for example Case study 12.1.4.

The Nile Minimum dataset is part of any TSL installer file and can be found in the data
folder located in the install folder of TSL. When we inspect the autocorrelation function of
the time series on the Database page, we find that the ACF displays a classic long memory
pattern. Even after increasing the number of lags to 50, we still find significant lags, see also
Figure 12.21

Figure 12.21
Autocorrelation function Nile Minimum

In this case study we will demonstrate several ways of modelling this dataset. We begin
with the score-driven models which show interesting results, especially if we deviate from the
Normal distribution.

12.5.1 Score-driven models

The power of score-driven models lies in the ability of score-driven models to deviate from the
Normal distribution for the irregular component of the model. A distribution like the Student
t distribution, for example, is much less susceptible to outliers in the data. Furthermore,
the score-driven models allow us to choose an arbitrary number of AR orders (p) and score

83 12.5. LONG MEMORY

lags (q). But how to choose p and q? It turns out that the algorithm of Hyndman and
Khandakar (2008) to find optimum values for p and q works for score-driven models as well,
see also Section 4.2.1. This does not come as a surprise since ARMA models are subsets of
score-driven models.

We navigate to the Pre-built models page of TSL and select only the model DCS-g in the
score-driven column. We then tick the Auto detect optimum p, q and select an 100%/0%
ratio for Training and Validation sample. Press the Process dashboard button in the bottom
right corner. TSL starts working and comes up with an optimum of p = 2, q = 2 with a
constant included.

------------------------------ PARAMETER OPTIMIZATION ------------------------------

Model: DCS-g
The dependent variable Y is: Minimum
The selection sample is: 0622-01-01 - 1467-01-01 (N = 1, T = 846 with 0 missings)

Lower AIC found with value 2041.4941
Model specs: p = 0, q = 1, constant included

Lower AIC found with value 1876.851
Model specs: p = 1, q = 2, constant included

Lower AIC found with value 1876.6624
Model specs: p = 2, q = 2, constant included

----------------------------- TRAINING SAMPLE MODEL FIT ----------------------------

Model: TSL001 DCS-g(2,2)
variable: Minimum

TSL001
Log likelihood -932.3312
Akaike Information Criterion (AIC) 1876.6624
Bias corrected AIC (AICc) 1876.7626
Bayesian Information Criterion (BIC) 1905.1056
in-sample MSE 0.5313
... RMSE 0.7289
... MAE 0.5403
... MAPE 4.6854
Sample size 846
Effective sample size 844
* based on one-step-ahead forecast errors

Continuing the modelling process we select only the DCS-t model in the score-driven
column. We then tick the Auto detect optimum p, q box and press the Process dashboard
button in the bottom right corner. After TSL is done finding the optimum number p, q we
have the results

CHAPTER 12. CASE STUDIES 84

------------------------------ PARAMETER OPTIMIZATION ------------------------------

Model: DCS-t
The dependent variable Y is: Minimum
The selection sample is: 0622-01-01 - 1467-01-01 (N = 1, T = 846 with 0 missings)

Lower AIC found with value 2005.2239
Model specs: p = 0, q = 1, constant included

Lower AIC found with value 1801.8766
Model specs: p = 4, q = 2, constant included

Lower AIC found with value 1799.8932
Model specs: p = 3, q = 2, constant included

Lower AIC found with value 1798.3775
Model specs: p = 2, q = 2, constant included

--------------------------------- MODEL FIT ---------------------------------

Model: TSL002 DCS-t(2,2)
variable: Minimum

TSL002
Log likelihood -892.1888
Akaike Information Criterion (AIC) 1798.3775
Bias corrected AIC (AICc) 1798.5112
Bayesian Information Criterion (BIC) 1831.5612
in-sample MSE 0.5242
... RMSE 0.7240
... MAE 0.5315
... MAPE 4.5938
Sample size 846
Effective sample size 844
* based on one-step-ahead forecast errors

The improvement in model fit is large. The likelihood improved 40 likelihood points and
the AIC of the DCS-t(2,2) model is almost 100 points lower (better). In-sample measures
MSE, RMSE, MAE, and MAPE are all better as well, albeit less dramatic. The student t
model had one extra model parameter that needs to be estimated. This is the degrees of
freedom and it is estimated at 4.8061 which shows that the tails of the distribution are much
thicker than that of the Normal distribution meaning that the probability of extreme events
becomes larger. Note that for degrees of freedom going to infinity, the DCS-t(p, q) model
reverts to the DCS-g(p, q) model. In practice, the degrees of freedom do not need to go
all the way to infinity. Degrees of freedom being estimated > 100 already closely resembles
the DCS-g(p, q) model. The effect of thicker tails can be see in Figure 12.22 as well. This
figure shows the extracted signal of the DCS-t(2, 2) and DCS-t(2, 2) model. We see that the

85 12.5. LONG MEMORY

DCS-t(2, 2) reacts less strongly to the outliers in the data

Figure 12.22
Extracted signal of the DCS-t(2, 2) and DCS-t(2, 2) model

12.5.2 Two component model

Another way to model a long memory process is by using two components, one persistent
component and one (less persistent) stationary component. We go to the Build your own
model page of TSL and select a time-varying level (Random Walk). Do not select a slope
component but do select an ARMA(1,0). Go to the Estimation page and click the Estimate
button. The result is a model with a log likelihood value roughly similar to the DCS-g(2, 2)
model and an extracted signal that shows a comparable pattern as well, see Figure 12.23.

We can also specifically deal with outliers and possible structural breaks in the data. Go
to the Build your own model page and add Automatically find Intervention variables to the
model. Go to the Estimation page and click the Estimate button. The result is an even better
model fit than the one from the DCS-t(2, 2) model. We have:

Intervention coefficients:

Beta Value Std.Err t-stat Prob
beta_outlier_0627-01-01 2.244 0.5456 4.112 4.3092e-05
beta_outlier_0646-01-01 2.772 0.5448 5.089 4.4709e-07
beta_outlier_0656-01-01 1.694 0.5448 3.110 0.0019
beta_outlier_0660-01-01 1.681 0.5448 3.085 0.0021
beta_outlier_0691-01-01 -2.202 0.5447 -4.043 5.7813e-05
beta_outlier_0713-01-01 -1.738 0.5447 -3.191 0.0015
beta_outlier_0719-01-01 1.750 0.5447 3.212 0.0014
beta_outlier_0809-01-01 3.502 0.5447 6.428 2.1893e-10
beta_outlier_0878-01-01 2.747 0.5447 5.043 5.6515e-07

CHAPTER 12. CASE STUDIES 86

beta_outlier_0962-01-01 1.889 0.5447 3.468 5.5135e-04
beta_outlier_0981-01-01 -1.650 0.5447 -3.029 0.0025
beta_outlier_1060-01-01 1.781 0.5447 3.269 0.0011
beta_outlier_1067-01-01 1.782 0.5447 3.271 0.0011
beta_outlier_1100-01-01 1.922 0.5447 3.528 4.4246e-04
beta_outlier_1292-01-01 -1.946 0.5447 -3.573 3.7329e-04
beta_outlier_1357-01-01 3.548 0.5447 6.513 1.2805e-10
beta_outlier_1409-01-01 1.812 0.5471 3.312 9.6656e-04
beta_outlier_1433-01-01 2.707 0.5448 4.968 8.2434e-07
beta_outlier_1439-01-01 1.897 0.5448 3.482 5.2474e-04
beta_outlier_1444-01-01 2.809 0.5448 5.156 3.1567e-07
beta_break_1397-01-01 -1.815 0.4063 -4.466 9.0860e-06
beta_break_1411-01-01 1.608 0.4073 3.947 8.5933e-05

--------------------------------- MODEL FIT ---------------------------------

Model: TSL004
variable: Minimum

TSL004
Log likelihood -779.5080
Akaike Information Criterion (AIC) 1613.0160
Bias corrected AIC (AICc) 1614.8644
Bayesian Information Criterion (BIC) 1741.0100
in-sample MSE 0.5107
... RMSE 0.7146
... MAE 0.5235
... MAPE 4.5169
Sample size 846
Effective sample size 823
* based on one-step-ahead forecast errors

TSL finds 20 outliers and 2 structural breaks, roughly 1 interventions every 38 year. The
extracted signal of the two component model with interventions is roughly comparable to the
DCS-t(2, 2) models as can be seen in Figure 12.23.

87 12.5. LONG MEMORY

Figure 12.23
Extracted signal DCS and two component models

Figure 12.24
Structural break

CHAPTER 12. CASE STUDIES 88

Figure 12.25
Autocorrelation functions

89 12.6. US MEAT PRODUCTION

12.6 US meat production
This case study is on US meat production. Load the dataset us meat production.csv from
the data folder located in the install folder of TSL. Select and plot the Pork time series. We
see monthly production of pork in the United States in millions of pounds. At first glance,
this dataset should not give us too many problems with a clear upward trend and a monthly
seasonal. However, this time series turns out to hide some very interesting dynamics which
we will uncover in this case study.

12.6.1 Basic structural time series model

We begin with the Basic structural time series model consisting of a time-varying level, slope,
and monthly seasonal (s=12). Select these components on the Build your own model page
and Estimate the model by clicking the Estimate button on the Estimation page. The model
fit is:

--------------------------------- MODEL FIT ---------------------------------

Model: TSL001
variable: Pork

TSL001
Log likelihood -4187.358
Akaike Information Criterion (AIC) 8406.715
Bias corrected AIC (AICc) 8407.472
Bayesian Information Criterion (BIC) 8480.335
in-sample MSE 6005.796
... RMSE 77.497
... MAE 60.766
... MAPE 4.357
Sample size 748
Effective sample size 735
* based on one-step-ahead forecast errors

The graphical output is presented in Figure 12.26. We see a time-varying seasonal pattern
where the difference between months increase over time. Without investigating further we
could accept this model but the ACF of the predicted standardized residuals (top right panel
of Figure 12.27) shows something interesting and worrying at the same time. The ACF shows
strong signs of residual autocorrelation and it is periodic with a period of 3, often followed
by a negative correlation spike. The spectral density (bottom right panel of Figure 12.27)
confirms the periodicity with a peak at 2.0/0.7 ≈ 2.86. What is going on here? Apparently
there is strong periodicity left in the residuals.
It could be that the periodic behaviour has something to do with reporting rules. A period
of ≈ 2.86 means at the end of a quarter. Could it be that numbers need to be reported

CHAPTER 12. CASE STUDIES 90

Figure 12.26
Extracted Level and Seasonal

at the end of each quarter and numbers of the first and second month within a quarter are
sometimes reported in the third month?

Figure 12.27
Graphical diagnostics of standardized residuals

12.6.2 Adding a cycle component

If we add a cycle to our model, the model fit strongly improves. The output of TSL is:

----------------------------- PARAMETER SUMMARY -----------------------------

91 12.6. US MEAT PRODUCTION

Cycle properties:

Parameter type Cycle 1
Variance 1368.1797
Period 2.8716
Frequency 2.1880
Damping factor 0.9999
Amplitude 63.0507

--------------------------------- MODEL FIT ---------------------------------

Model: TSL002
variable: Pork

TSL002
Log likelihood -4031.384
Akaike Information Criterion (AIC) 8100.767
Bias corrected AIC (AICc) 8101.829
Bayesian Information Criterion (BIC) 8188.190
in-sample MSE 3915.803
... RMSE 62.576
... MAE 47.334
... MAPE 3.440
Sample size 748
Effective sample size 735
* based on one-step-ahead forecast errors

Notice that the period of the cycle is estimated at 2.87 which is close to the information
contained in the spectral density with a period of 2.0/0.7 ≈ 2.86. The graphical output is
shown in Figure 12.28. Again the series shows something interesting. The Extracted cycle
itself shows periodic behaviour with a cycle within the cycle.

12.6.3 Quarterly data

Another way of dealing with the large spikes in the autocorrelation plot is by aggregating the
data. The series can be converted from a monthly series into a quarterly one by summing up
the data every three months. Currently this cannot be done in TSL itself but let us know if
this is a feature you want to see!
For now we used Excel to aggregate the data. The output of modelling the resulting quarterly
series with a time-varing level, slope, and seasonal (s=4) is presented in Figure 12.29. The fig-
ure shows us that the ACF of the predicted residuals does not show significant autocorrelation.

CHAPTER 12. CASE STUDIES 92

Figure 12.28
Extracted Level, Seasonal, and Cycle

Figure 12.29
Extracted Level and Seasonal for quarterly series

12.6.4 Further exploration

• Verify that in the model with the cycle, if the cycle period is fixed at exactly 3 months,
the model fit is much worse compared to the model with the estimated cycle period of
2.87.

• Verify that the ACF of the standardized residuals of the model with the cycle is much
better compared to the model without a cycle but that we still see correlation spikes at
some lags.

• Show that the model fit of the model with the cycle can be further improved by letting
TSL search for outliers and structural breaks.

93 12.7. CALL CENTER

12.7 Call center
In this case study we analyse call center data to illustrate how to use TSL to model complex
seasonal patterns. The series is used in the second application of the TBATS paper of
De Livera et al. (2011) and it can be downloaded from here. The call center time series
consists of 10,140 observations on call arrivals per 5-minute interval between 7:00 AM and
9:00 PM on weekdays. The series contains a daily seasonal pattern with period 169 (number of
5-minute intervals between 7:00 AM and 9:00 PM) and a weekly seasonal pattern with period
169 × 5 weekdays = 845. Just as in De Livera et al. (2011), we use 7605 observations (9
weeks) for our training sample which leaves 2535 observations (3 weeks) to analyse forecasting
performance. Note that in contrast to the data as shown in figure 1b and 5 of De Livera
et al. (2011), the data set we downloaded has two days of missing values (04/04/2003 and
07/04/2003), see Figure 12.30. On further inspection of figure 5 of De Livera et al. (2011),
we see that the corresponding days in their figure have a more smooth pattern than the rest
of the data so they might have used some fill-in values for the missing values. In TSL there
is no need for this. Missing values are part of time series analysis, see also Section 12.1.4.

Figure 12.30
Call center data set with two days of missing values

https://robjhyndman.com/data/callcenter.txt

CHAPTER 12. CASE STUDIES 94

12.7.1 Building the model

We select a time-varying level, time-varying seasonal 1 with a period of 169 and 20 factors,
and a time-varying seasonal 2 with a period of 845 and 10 factors.

Important: The number of factors, in combination with the time series length,
strongly influences estimation times and higher numbers seldom lead to better
forecasts, Therefore, it is strongly advised to not choose the number of factors too

high and it is almost never needed to go beyond 40.

Select a training sample of 7605 on the Estimation page and estimate the model. After TSL
is done estimating, the graph page shows us Figure 12.31: From Figure 12.31 we see that

Figure 12.31
Extracted level and two seasonals

TSL has no problem with the missing data. The Kalman Filter / Smoother algorithm nicely
interpolates all the selected components. Furthermore, we see from the top panel that the
Level is not smooth and it looks like the level itself picks up some dynamics. This is confirmed
by the ACF of the predicted residuals which shows significant first order autocorrelation among
other lags. Before we fix this, let’s first make some forecasts to compare this model to the
following models. Go to the model comparison page and click the start loss calculation button
in the top right corner.

Our next modelling step is to add an ARMA(1,0) process to the existing model to do
something about the first order autocorrelation that is still present in the residuals. Select the
ARIMA(1,0) component on the Build your own model page, leave everything else the same,
and estimate the model. The result should be like Figure 12.32. We learn from Figure 12.32
that the level is much smoother. If we look at the ACF of the predicted residuals we see that

95 12.7. CALL CENTER

Figure 12.32
Extracted level and two seasonals + ARMA(1,0) errors

the first order autocorrelation is still present. Again, let’s make some forecasts to compare
this model to the first and the following models. Go to the model comparison page and click
the start loss calculation button in the top right corner.

12.7.2 Seasonal variance extension

The default is to have one variance per seasonal component for all seasonal factors. In
some situations, this is somewhat restrictive and estimating additional seasonal variances can
improve model fit and forecast performance. However, there are an extremely large number
of factor combinations and machine learning needs to assist here since we cannot try all
combinations. TSL has a machine learning method that determines which seasonal factor
gets its own variance parameter. To see this in action, go the top menu bar and click on
Advanced settings and switch on Seasonal 1 variance extension. Go to the Estimation page
and make sure no parameters are set to fixed. Click on Estimate and wait till the algorithm
is finished. This takes some time with an extensive model like this. After the estimation is
completed, go to the Model comparison page and start the loss calculation for this model as
well. After that is completed you should see three check boxes in the top left corner. When
all are checked the resulting figure should look like the one in Figure 12.33. The lowest loss
line belongs to the last estimated model and is at least as good as the loss obtained from the
TBATS package as presented in De Livera et al. (2011).

Keep in mind that the analysis performed by TSL in this case study is based on the call
center time series with missing values.

CHAPTER 12. CASE STUDIES 96

Figure 12.33
Model comparison based on forecast performance

97 12.8. REGRESSION WITH ARMA ERRORS

12.8 Regression with ARMA errors
TSL makes extensive use of models in state space form due to the many advantages this brings.
Once a model has been put in a state space form, the way is opened for the application of
a number of important algorithms. At the centre of these is the Kalman filter. The Kalman
filter is a recursive procedure for computing the optimal estimator of the state vector at time
t, based on the information available at time t, see also Harvey (1990).

The dynamics of state space models come from stochastic components, see also Ap-
pendix B. If the components are deterministic (meaning the error terms of the state com-
ponents have variance zero and therefore disappear from the equation), the Kalman filter
would be equivalent to the ordinary least square (OLS) recursions. This means that if you
would only include explanatory variables in TSL and no time-varying components you would
be estimating a standard regression model as given by

yi = α +Xiβ + εi, i = 1, . . . , n. (12.1)

The estimates of β, denoted by β̂, are quickly found with the equation

β̂ = (X ′X)−1X ′y (12.2)

and you normally would not use the Kalman filter to find β̂. However, the results from the
Kalman filter should be exactly the same as the β̂ from above and it is illustrative to see
the results from the static regression model in TSL. These results will later be extended with
ARMA(p,q) errors.

12.8.1 Regression model in TSL

Load the El Nino dataset which can be found in the data folder located in the install folder of
TSL. Select the EN3.4 series from the loaded data set. Go to the Build you own model page
and switch-on the Explanatory variables and select all variables except the Date variable from
the pop-up window. If you need to include a constant in the regression model, you can add
a column of ones to the dataset but more convenient is just to add a fixed Level component
to the model. A fixed Level component is in this scenario exactly the same as the constant
α in the standard regression model of (12.1). Go to the Estimation page and estimate the
model. The result should be:

Regression coefficients:

Beta Value Std.Err t-stat Prob
beta_RB 0.1591 0.0510 3.1229 0.0019
beta_WPAC -0.1293 0.1998 -0.6470 0.5180
beta_WPAC2 0.9271 0.2026 4.5751 6.4450e-06
beta_WPAC3 -0.1793 0.1903 -0.9419 0.3468

CHAPTER 12. CASE STUDIES 98

beta_WPAC4 -0.3629 0.1686 -2.1525 0.0320
beta_50fin 0.5637 0.2164 2.6046 0.0096
beta_100cold -0.0055 0.0256 -0.2166 0.8286
beta_100fin1 -0.1267 0.0915 -1.3848 0.1669
beta_100fin2 -0.4103 0.0824 -4.9782 9.7295e-07
beta_150fin1 -0.2586 0.1310 -1.9739 0.0491
beta_150fin2 0.1432 0.0693 2.0656 0.0395
beta_200fin1 0.2533 0.1456 1.7404 0.0826
beta_200fin2 -0.0347 0.1005 -0.3454 0.7300
beta_250fin1 0.2143 0.1494 1.4346 0.1522
beta_250fin2 -0.0651 0.1389 -0.4688 0.6395
beta_300fin1 -0.1427 0.2210 -0.6459 0.5188
beta_300fin2 -0.1130 0.2308 -0.4894 0.6248
beta_400fin1 -0.3206 0.2428 -1.3203 0.1875
beta_400fin2 0.1122 0.2679 0.4186 0.6758
beta_500fin1 -0.6584 0.2839 -2.3193 0.0209
beta_500fin2 -0.3397 0.2786 -1.2194 0.2235
beta_wnd160.200_0.10 -33.6202 2.8739 -11.6985 0.0000
beta_wnd180.220_-4.4 86.0116 5.3721 16.0107 0.0000
beta_wnd180.210_-10.0 -16.4366 4.5228 -3.6341 3.1704e-04

State vector at period 2015-11-01:

Component Value Std.Err t-stat Prob
Level 28.02 3.808 7.358 1.1546e-12

which is exactly equal to the OLS estimate β̂ as we would calculate it from 12.2.
But what does Predicting, Filtering, and Smoothing mean in the case of the regression

model we just estimated? Remember that, being in time point t, Predicting uses the data
up to time t − 1, Filtering the data up to time t, and Smoothing uses all the data. If we
would plot the fixed level (constant α) for Predicting, Filtering, and Smoothing we see that
Smoothing gives a straight line while Predicting, Filtering build the level up over time to the
end of the data set, see also Figure 12.34. With the above logic, the estimates for Filtering
and Smoothing should be the same at time t = T when all data is used. If we look at the
bottom panel of Figure 12.34 we see that this is indeed the case.

If you would like to end up with a set of only significant variables, based on a user-specified
t-stat bound, you can select the Automatically option for the explanatory variables on the
Build your own model page. Estimating the model leads to the following estimates.

Regression coefficients:

Beta Value Std.Err t-stat Prob
beta_RB 0.1692 0.0474 3.570 4.0098e-04
beta_WPAC2 0.9083 0.1476 6.153 1.8695e-09
beta_WPAC4 -0.5950 0.1118 -5.322 1.7235e-07

99 12.8. REGRESSION WITH ARMA ERRORS

Figure 12.34
Predicted, Filtered, and Smoothed constant in regression model

beta_50fin 0.4916 0.1719 2.860 0.0045
beta_100fin1 -0.1781 0.0533 -3.344 9.0407e-04
beta_100fin2 -0.3515 0.0643 -5.466 8.1630e-08
beta_150fin2 0.0894 0.0320 2.795 0.0054
beta_500fin1 -0.9462 0.2136 -4.430 1.2228e-05
beta_wnd160.200_0.10 -35.4201 2.2560 -15.701 0.0000
beta_wnd180.220_-4.4 92.1050 4.6275 19.904 0.0000
beta_wnd180.210_-10.0 -20.3677 3.8036 -5.355 1.4566e-07

State vector at period 2015-11-01:

Component Value Std.Err t-stat Prob
Level 24.19 2.799 8.640 2.2204e-16

from which we can see that all variables are significant with an absolute t-stat of at least
2.795.

Figure 12.35 shows the contribution of all X’s combined (Xβ̂) in the top panel and the
individual contributions of the X’s in a sandgraph in the bottom panel.

12.8.2 Regression model with ARMA(p,q) errors

The ACF plot of the predicted residuals shows that there is first and second lag autocorrelation
left in the residuals. We can combat this by introducing ARMA(p,q) errors in the model. Select
an additional ARMA(2,1) model from the Build your own model page, select all variables
except the Date variable, set Explanatory variables to automatic and Estimate the model.
The output is:

CHAPTER 12. CASE STUDIES 100

Figure 12.35
Contribution of all significant X’s in a Sandgraph

Variance of disturbances:

Variance type Value q-ratio
Level variance 0.0000 0
ARMA variance 0.0769 1

ARMA properties:

Parameter type Value
Unconditional variance 1.0645
AR2 phi1 1.6105
AR2 phi2 -0.7024
MA1 theta1 -0.1509

Regression coefficients:

Beta Value Std.Err t-stat Prob
beta_WPAC3 0.6416 0.1025 6.258 1.0117e-09
beta_WPAC4 -0.2615 0.0889 -2.941 0.0035
beta_150fin2 -0.1771 0.0412 -4.304 2.1204e-05
beta_200fin1 0.1417 0.0423 3.345 9.0050e-04
beta_250fin2 0.3072 0.0981 3.133 0.0019
beta_wnd160.200_0.10 -5.5813 1.4499 -3.849 1.3797e-04
beta_wnd180.220_-4.4 11.9443 2.6044 4.586 6.0621e-06
beta_wnd180.210_-10.0 -6.6402 2.0543 -3.232 0.0013

101 12.8. REGRESSION WITH ARMA ERRORS

State vector at period 2015-11-01:

Component Value Std.Err t-stat Prob
Level 14.058 1.5445 9.102 0
ARMA(p,q) 1.990 0.1953 10.189 0

The ACF show no residual correlation in the first lags but the 12th lag has a large spike.
This is due to the missing of a seasonal component. Additional measures can be lagged
explanatory variables or a monthly seasonal component.

CHAPTER 12. CASE STUDIES 102

12.9 Smooth trend
The data for this case study is the HadCRUT5 annual data on global sea and land temperature.
HadCRUT is a dataset of monthly instrumental temperature records formed by combining the
sea surface temperature records compiled by the Hadley Centre of the UK Met Office and the
land surface air temperature records compiled by the Climatic Research Unit (CRU) of the
University of East Anglia. The time series are presented as temperature anomalies (deg C)
relative to 1961-1990. The data can be found here.

The data can also be found in the data folder located in the install folder of TSL under the
name global temp.csv. Loading and plotting the data in TSL shows an upward trend in the
data starting in the 1980’s so we clearly need a slope component in our model. Furthermore,
the autocorrelation function shows clear signs of long memory.

12.9.1 Integrated Random Walk

Select a time-varying level and time-varying slope on the Build your own model page. Go to
the Estimation page and set the end of the Training sample to 141 (1990-01-01). Estimate the
model and when TSL is done, go to the Forecast page. Under Plot options set the forecast
to 32 periods ahead and select multi-step-ahead forecast. Verify that the multi-step-ahead
forecasts are bad. So how to improve?

Go to the Build your own model page and select a fixed level and time-varying slope.
The corresponding model is called an Integrated Random Walk model and the result is a
model with a much smoother trend. Estimate the model and go to the Forecast page. Verify
that the multi-step-ahead forecasts are already much better and all, except two, data points
lie within ± 1 standard error. Going back to the Graph page and plotting the ACF for the
Predicted residuals reveals first-lag autocorrelation.

Add an ARMA(1,0) component to our latest model and estimate the model. The result
is an increase in log likelihood, no significant autocorrelation in the Predicted residuals and
an even better forecasting performance.

The training sample results should like Figure 12.36, The test sample results should like
Figure 12.37, and the Forecasting performance of all three models that we estimated are
compared in Figure 12.38.

https://www.metoffice.gov.uk/hadobs/hadcrut5/data/current/download.html

103 12.9. SMOOTH TREND

Figure 12.36
Temperature data with Integrated Random Walk

Figure 12.37
32-step-ahead forecast for Temperature data

CHAPTER 12. CASE STUDIES 104

Figure 12.38
Forecasting performance for three models

105 12.10. ELECTRICITY CONSUMPTION

12.10 Electricity consumption
This case study is on hourly electricity consumption in megawatts. The data can be found
here or in the TSL data folder under the name hourly elec.csv. The time series starts at
01/01/2005 00:00:00 and ends at 31/12/2017 23:00:00. The time series is challenging in
several ways. First, the series is very long with 113,952 observations. Second, the series has
multiple seasonal patterns with an intraday hourly pattern with a period of 24, a day-of-the-
week pattern with a period of 24 × 7 = 168, and an annual seasonal pattern with a period of
24 × 365.25 = 8766 (taking leap years into account). We use a training sample consisting of
105,192 observations that ranges from 01/01/2005 00:00:00 to 31/12/2016 23:00:00. The
validation sample is the last year of the data set and consists of 8760 observations. With long
time series like these, in combination with several dynamic components, estimation times can
become relatively long. The goal of this case study is to find a good model and estimate the
model parameters. Once these parameters are estimated and the forecasting performance of
the model is satisfactory, in general the model parameters do not need to be estimated again
for a while and forecasts are obtained quickly. The reason that model parameters do not need
to be estimated again is because in most cases, adding data to an already long time series
does not change parameter estimates by much.

12.10.1 Local level model

To set a benchmark, we model the time series with a Local Level model. Select a time-varying
level on the Build your own model page, set the end of the training sample to 105,192 on
the Estimation page and Estimate the model. TSL shows us the following estimates for the
variances:

Variance of disturbances:

Variance type Value q-ratio
Level variance 7641.628 1.0000
Irregular variance 7.548 9.8772e-04

We see that the variance of the Level is very high compared to the variance of the Irregular.
This means that the specified Level is not informative for the data, something not surprising
since we know that several other important dynamics are not yet accounted for. No clear
signal is found in the data and the best forecast for the next time period is just the last
observation. The result of such a model is that the Predicted Level dutifully follows the data
but the predictive power of the model is low, something we will see later. Zooming in on the
beginning of the training sample we see the Predicted level following the data and lagging by
one time point in Figure 12.39

Start a loss calculation on the Model comparison page to set a forecasting performance
benchmark.

https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption

CHAPTER 12. CASE STUDIES 106

Figure 12.39
Path of Local Level model

12.10.2 Daily seasonal with a period of 24

Our next task is to model the intraday pattern of the electricity consumption with a seasonal
component with a period of 24. Take 6 factors. After TSL is done estimating the model,
we find our first seasonal pattern in the top panel of Figure 12.40. After midnight, we see a
decrease in electricity consumption which bottoms out around 4 am. From that point on, the
day slowly starts and with that electricity consumption increases. It peaks at noon, goes down
a bit and increases further to the daily peak around 7pm after which it declines till the next
day starts. Interestingly, the differences between daily high and low values is larger during the
summer as we can see from the bottom panel of Figure 12.40.

Start a loss calculation on the Model comparison page to see the effect on forecasting
performance from adding the first seasonal.

12.10.3 Weekday seasonal with a period of 168

We continue building our model by adding the second seasonal, the day-of-the-week seasonal,
with a period of 24 × 7 = 168. Take 6 factors. After TSL is done estimating the model,
we find our second seasonal pattern in Figure 12.41. The top panel is the extracted intraday
pattern that we saw in Figure 12.40. The mid panel is our extracted day-of-the-week pattern
and we see that electricity consumption is on average lower on Saturday and Sunday compared

107 12.10. ELECTRICITY CONSUMPTION

Figure 12.40
Intraday seasonal pattern

to the weekdays. The bottom panel shows the sum of the two seasonal patterns.
Start a loss calculation on the Model comparison page to see the effect on forecasting

performance from adding the second seasonal. The loss calculation becomes a time-consuming
process since we have to make many h-step-ahead forecasts, see also Section 10.1.

12.10.4 Annual seasonal with a period of 8766

The third and last seasonal component, models the annual seasonal pattern to take the
differences in electricity consumption per month of the year into account. This seasonal
behaves gradually over time since one periods spans 8766 observations. Take 6 factors. To
have the third seasonal not interfere with the level, we can adjust the model in several ways.
For example, limiting the variance of the level and the 3rd seasonal component by restricting
them to a certain value. A probably more elegant way is adding an ARMA(1,0) component
to the model which will effectively serve as AR(1) errors. The result is a smooth behaving
level and 3rd seasonal component.

Our final text output is:

Variance of disturbances:

Variance type Value q-ratio
Level variance 0.3892 3.6432e-04

CHAPTER 12. CASE STUDIES 108

Figure 12.41
Intraday, day-of-the-week, and sum of both seasonal pattern

Seasonal variance 0.8066 7.5514e-04
Seasonal variance 2 9.2342e-04 8.6447e-07
Seasonal variance 3 0.0000 0.0000
ARMA variance 1068.1885 1.0000
Irregular variance 0.0000 0.0000

Value Prob
Seasonal chi2 test 600.6 8.0100e-121

Value Prob
Seasonal chi2 test 1950.5 0

Value Prob
Seasonal chi2 test 500.1 2.0618e-99

ARMA properties:

Parameter type Value
Unconditional variance 41547.5465
AR1 phi1 0.9871

with the three seasonal components all extremely significant with p-values effectively zero.
Figure 12.42 shows the extracted intraday, day-of-the-week and annual patterns. The

109 12.10. ELECTRICITY CONSUMPTION

bottom right panel is the sum of the three seasonal components. The botom left panel shows
the annual seasonal component. it shows that electricity consumption has two peaks during
the year. The first one is around february and the second peaks during the summer months.

Figure 12.42
Intraday, day-of-the-week, annual pattern, and sum of seasonals

It is time to compare the forecasting performance of our models. Start a loss calculation
on the Model comparison page to see the effect on forecasting performance from adding the
third seasonal. Plotting the losses of the four models in shown in Figure 12.43. We see that in
each modelling step, the loss is lower. It shows that taking into account the different seasonal
patterns makes a lot of difference in forecasting.

CHAPTER 12. CASE STUDIES 110

Figure 12.43
Forecast losses for the seasonal models

Appendices

Appendix A

Dynamic models

Why do we need dynamic models? Short answer, many real-world processess are dynamic /
time-varying. The more we can capture dynamics, the better we understand the processes and
the better we can predict them. Many processes exhibit some form of dynamic structure. The
list of examples is endless and contains almost every (academic) field. For example, finance
where the volatility of stock price returns is not constant over time. In Economics, where
the sale of clothing items exhibit strong seasonality due to summer and winter but also daily
seasonal patterns because Saturday will be, in general, a more busy day than Monday, the
trajectory of a rocket in Engineering, The El Niño effect due to change in water temperature
in Climatology, the number of oak processionary caterpillars throughout the year in Biology,
to name a diverse few. If we would be interested in saying anything meaningful about the
examples above we need to deal with time-varyingness in some sort of way.

We illustrate the strength of dynamic models with figures. The data is the number of
cases of Dengue (logged values) in a region of Venezuela from 2001 to 2017, see Figure A.1.

Figure A.1
Number of cases of Dengue in a region of Venezuela.

Number of cases of Dengue in a
region of Venezuela from 2001 to
2017. The estimated static mean
is displayed as well.

2002 2004 2006 2008 2010 2012 2014 2016

0

1

2

3

4

5 dengue_inc_log
Level - dengue_inc_log

Figure A.1 shows the static mean and we can clearly see that a static mean would give a

113

model fit that can be easily improved on. In the beginning of the sample, the mean is much
too high and during the worst period the static mean is far below the actual number of cases.
Needless to say, we could not use a static model to make accurate forecasts for this series.

Now consider the situation if we would make the mean time-varying by allowing it to have
some smooth pattern over time. The dynamic mean clearly follows the data much better.

Figure A.2
Cases of Dengue and time-varying mean

Number of cases of Dengue in a
region of Venezuela from 2001 to
2017 with time-varying mean.

2002 2004 2006 2008 2010 2012 2014 2016

0

1

2

3

4

5 dengue_inc_log
Level - dengue_inc_log - TSL003

As it turns out, model fit can be further improved by taking into account the monthly effect
of the time series. The improved model fit is displayed in Figure A.3. The figures in this
section can all be replicated with TSL.

Figure A.3
Number of cases of Dengue with dynamic mean with monthly effect

Number of cases of Dengue in a
region of Venezuela from 2001
to 2017 and dynamic mean.
The dynamic mean includes a
monthly seasonal component.

2002 2004 2006 2008 2010 2012 2014 2016

0

1

2

3

4

5 dengue_inc_log
Total signal - dengue_inc_log - TSL004

Appendix B

State Space models

Consider a parametric model for an observed time series y = (y′
1, . . . , y

′
n)′ that is formulated

conditionally on a latent m× 1 time-varying parameter vector αt, for time index t = 1, . . . , n.
We are interested in the statistical behavior of the state vector, αt, given a subset of the data,
i.e. the data up to time t− 1 (forecasting), the data up to time t (filtering) or the whole data
set (smoothing). One possible framework for such an analysis is the state space model, the
general form of which is given by

yt|αt ∼ p(yt|αt;ψ), αt+1 ∼ p(αt+1|αt;ψ), α1 ∼ p(α1;ψ), (B.1)

where p(yt|αt;ψ) is the observation density, p(αt+1|αt;ψ) is the state transition density with
initial density p(α1;ψ) and ψ is a static parameter vector.

Minimum mean square error (MMSE) estimates of αt and MMSE forecasts for yt can be
obtained by the Kalman filter and related smoother methods if the following three conditions
are met: (i) the state transition density p(αt+1|αt;ψ) for αt is linear and Gaussian, (ii) the
relation between yt and αt in p(yt|αt;ψ) is linear and (iii) the observation yt is, conditional on
αt, normally distributed. In other words, p(yt|αt;ψ), p(αt+1|αt;ψ) and p(α1;ψ) are Gaussian
and the observation and transition relations are linear. If all three conditions are satisfied, the
state space model of (B.1) reduces to the linear Gaussian state space model,

yt = Zαt + εt, εt ∼ N(0, Ht),
αt+1 = Tαt + ηt, ηt ∼ N(0, Qt), α1 ∼ p(a1, P1),

(B.2)

for t = 1, . . . , n, see for example Durbin and Koopman (2012, Part I). The violation of at
least one of the three properties means that the state space model becomes nonlinear and/or
non-Gaussian for which we have to rely on other methods to obtain optimal estimates.

In TSL, we work with Linear Gaussian State Space models and the principle of maximum
likelihood estimation (MLE). The main motivation to use MLE are the well established and
well documented properties of MLE.

Appendix C

Score-driven models

Consider a parametric model for an observed time series y = (y′
1, . . . , y

′
n)′ that is formulated

conditionally on a latent m× 1 time-varying parameter vector αt, for time index t = 1, . . . , n.
We are interested in the statistical behavior of αt given a subset of the data, i.e. the data
up to time t − 1. One possible framework for such an analysis is the class of score-driven
models in which the latent time-varying parameter vector αt is updated over time using an
autoregressive updating function based on the score of the conditional observation probability
density function, see Creal et al. (2013) and Harvey (2013). The updating function for αt is
given by

αt+1 = ω +
p∑

i=1
Aist−i+1 +

q∑
j=1

Bjαt−j+1,

where ω is a vector of constants, A and B are fixed coefficient matrices and st is the

scaled score function which is the driving force behind the updating equation. The unknown
coefficients ω, A and B depend on the static parameter vector ψ. The definition of st is

st = St · ∇t, ∇t = ∂ log p(yt|αt,Ft−1;ψ)
∂αt

, t = 1, . . . , n,

where ∇t is the score vector of the (predictive) density p(yt|αt,Ft−1;ψ) of the observed time

series y = (y′
1, . . . , y

′
n)′. The information set Ft−1 usually consists of lagged variables of αt

and yt but can contain exogenous variables as well. To introduce further flexibility in the
model, the score vector ∇t can be scaled by a matrix St. Common choices for St are unit
scaling, the inverse of the Fisher information matrix, or the square root of the Fisher inverse
information matrix. The latter has the advantage of giving st a unit variance since the Fisher
information matrix is the variance matrix of the score vector. In this framework and given past
information, the time-varying parameter vector αt is perfectly predictable one-step-ahead.

The score-driven model has three main advantages: (i) the ‘filtered’ estimates of the time-
varying parameter are optimal in a Kullback-Leibler sense;(ii) since the score-driven models
are observation driven, their likelihood is known in closed-form; and (iii) the forecasting per-

APPENDIX C. SCORE-DRIVEN MODELS 116

formance of these models is comparable to their parameter-driven counterparts, see Koopman
et al. (2016). The second point emphasizes that static parameters can be estimated in a
straightforward way using maximum likelihood methods.

Appendix D

Submodels of score-driven models

Score-driven models encompass several other econometric models, among several well-known
like ARMA models and the GARCH model of Engle (1982). Furthermore the ACD model of
Engle and Russell (1998), the autoregressive conditional multinomial (ACM) model of Russell
and Engle (2005), the GARMA models of Benjamin et al. (2003), and the Poisson count
models discussed by Davis et al. (2005). We now show mathematically how ARMA and
GARCH models are submodels of score-driven models.

D.1 The ARMA model
Consider the time-varying mean model

yt = αt + εt, εt ∼ NID(0, σ2),

for t = 1, . . . , T and where NID means Normally Independently Distributed. If we apply the
score-driven methodology as discussed in Appendix C and we take p = q = 1 we have,

αt+1 = ω + βαt + κst, st = St · ∇,

where
∇t = ∂ℓt

∂αt

, St = −Et−1

[
∂2ℓt

∂αt∂αt

]−1

,

with
ℓt = −1

2 log 2π − 1
2 logσ2 − 1

2σ2 (yt − αt)2.

We obtain
∇t = 1

σ2 (yt − αt), St = σ2,

and st = yt − αt which is the prediction error. This means that the score updating becomes

αt+1 = ω + βαt + κ(yt − αt),

APPENDIX D. SUBMODELS OF SCORE-DRIVEN MODELS 118

and if we now replace αt = yt − εt, we have

yt+1 = ω + βyt + εt+1 + (κ− β)εt,

and hence score updating implies the ARMA(1,1) model for yt

yt = ω + ϕyt−1 + εt + θεt−1,

where ϕ ≡ β and θ = κ− β. Furthermore, if we set κ = β, we obtain the AR(1) model and
if we set β = 0 we obtain the MA(1) model. The above is valid for higher lag orders p, q as
well which means that the score-driven framework encompasses the ARMA(p,q) model.

D.2 The GARCH model
The strong results of the above section holds, with a couple of small changes, for the time-
varying variance model as well. Consider the time-varying variance model

yt = µ+ εt, εt ∼ NID(0, αt),

for t = 1, . . . , T and where NID means Normally Independently Distributed. After setting
µ = 0 we have the predictive logdensity

ℓt = −1
2 log 2π − 1

2 logαt − y2
t

2αt

.

We obtain
∇t = 1

2α2
t

y2
t − 1

2αt

= 1
2α2

t

(y2
t − αt).

Furthermore we have St = 2α2
t and we obtain st = y2

t − αt. This means that the score
updating becomes

αt+1 = ω + βαt + κ(y2
t − αt),

and hence score updating implies the GARCH(1,1) model

αt+1 = ω + ϕαt + κ∗y2
t ,

where ϕ = β − κ and κ∗ ≡ κ. Furthermore, if we set κ = β, we obtain the ARCH(1) model.
The above is valid for higher lag orders of p, q as well which means that the score-driven
framework encompasses the GARCH(p,q) model.

It should be emphasized that a score-driven time-varying variance model with Student t
distributed errors is not equal to a GARCH-t model.

Bibliography

Bamston, A. G., M. Chelliah, and S. B. Goldenberg (1997). Documentation of a highly
enso-related sst region in the equatorial pacific: Research note. Atmosphere-ocean 35(3),
367–383.

Bates, J. M. and C. W. Granger (1969). The combination of forecasts. Journal of the
Operational Research Society 20(4), 451–468.

Benjamin, M. A., R. A. Rigby, and D. M. Stasinopoulos (2003). Generalized autoregressive
moving average models. Journal of the American Statistical association 98(461), 214–223.

Box, G. E., G. M. Jenkins, G. C. Reinsel, and G. M. Ljung (2015). Time series analysis:
forecasting and control. John Wiley & Sons.

Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill.

Creal, D. D., S. J. Koopman, and A. Lucas (2013). Generalized autoregressive score models
with applications. Journal of Applied Econometrics 28(5), 777–795.

Davis, R. A., W. T. Dunsmuir, and S. B. Streett (2005). Maximum likelihood estimation for
an observation driven model for poisson counts. Methodology and Computing in Applied
Probability 7(2), 149–159.

De Livera, A. M., R. J. Hyndman, and R. D. Snyder (2011). Forecasting time series with
complex seasonal patterns using exponential smoothing. Journal of the American statistical
association 106(496), 1513–1527.

Durbin, J. and S. J. Koopman (2012). Time Series Analysis by State Space Methods (2nd
ed.). Oxford: Oxford University Press.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the vari-
ance of united kingdom inflation. Econometrica 50(4), 987–1007.

Engle, R. F. and J. R. Russell (1998). Autoregressive conditional duration: a new model for
irregularly spaced transaction data. Econometrica 66(5), 1127–1162.

Granger, C. W. and R. Ramanathan (1984). Improved methods of combining forecasts.
Journal of forecasting 3(2), 197–204.

BIBLIOGRAPHY 120

Hansen, B. E. (2008). Least-squares forecast averaging. Journal of Econometrics 146(2),
342–350.

Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter.
Cambridge university press.

Harvey, A. C. (2013). Dynamic Models for Volatility and Heavy Tails: With Applications to
Financial and Economic Time Series, Volume 52. Cambridge: Cambridge University Press.

Harvey, A. C. and S. J. Koopman (1992). Diagnostic checking of unobserved-components
time series models. Journal of Business & Economic Statistics 10(4), 377–389.

Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving aver-
ages. International journal of forecasting 20(1), 5–10.

Hyndman, R. J. and Y. Khandakar (2008). Automatic time series forecasting: the forecast
package for r. Journal of statistical software 27, 1–22.

Koopman, S. J., A. Lucas, and M. Scharth (2016). Predicting time-varying parameters with
parameter-driven and observation-driven models. Review of Economics and Statistics 98(1),
97–110.

Li, M., S. J. Koopman, R. Lit, and D. Petrova (2020). Long-term forecasting of el niño events
via dynamic factor simulations. Journal of Econometrics 214(1), 46–66.

Petrova, D., S. J. Koopman, J. Ballester, and X. Rodó (2017). Improving the long-lead
predictability of el niño using a novel forecasting scheme based on a dynamic components
model. Climate Dynamics 48(3), 1249–1276.

Russell, J. R. and R. F. Engle (2005). A discrete-state continuous-time model of financial
transactions prices and times: The autoregressive conditional multinomial–autoregressive
conditional duration model. Journal of Business & Economic Statistics 23(2), 166–180.

Timmermann, A. (2006). Forecast combinations. Handbook of economic forecasting 1,
135–196.

Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Man-
agement science 6(3), 324–342.

	Preface
	Getting started
	Installing and starting TSL
	Frontpage
	Time Series Lab modules

	Connect to database
	Select database connection
	Search in database
	Download series

	Select & prepare data
	Database
	Load database
	Save database
	Time axis specification
	Select dependent variable
	Data transformation

	Graphical inspection of the data
	Type of plots
	Plot area
	Data characteristics and statistical tests
	Undocking the plot area

	Pre-built models
	Model selection
	Score-driven models
	Auto detect optimum p, q

	Model averaging
	Equal weights averaging
	Least squares
	Restricted least squares
	Forecast variance weighted

	Build your own model
	Structural time series models
	Level
	Slope
	Seasonal short
	Seasonal medium
	Seasonal long
	Cycle short / medium / long
	ARMA(p,q) I and II
	Explanatory variables
	Select variables
	Lag finder
	Settings

	Intervention variables

	Estimation
	Edit and fix parameter values
	Estimation options

	Graphics and diagnostics
	Selecting plot components
	Plot area
	Additional options
	Plot confidence bounds
	Add lines to database
	Select model / time series
	Plot options

	Print diagnostics
	State vector analysis
	Missing observation estimates
	Print recent state values
	Print parameter information
	Residual summary statistics
	Residual diagnostics
	Outlier and break diagnostics
	Model fit

	Save components

	Forecasting
	Forecast components
	Additional options
	Plot confidence bounds
	Select model / time series
	Plot options

	Load future
	Save forecast
	Output forecast

	Text output
	Model comparison
	Loss calculation procedure
	Start loss calculation

	Batch module
	Case studies
	Nile data
	Loading data
	Pre-built models
	Graphical output
	Missing data
	Comparing results
	Outliers and Structural breaks
	Further exploration

	Gasoline consumption
	Local Linear Trend model
	Basic Structural Time Series model
	Further exploration

	UK GAS consumption
	Energy consumption without intervention variables
	Energy consumption with intervention variables

	El Nino
	Loading and inspecting the data
	Periodicity in the time series

	Model: level + slope + seasonal
	Model: level + seasonal + cycle1 + cycle2
	Further exploration

	Long memory
	Score-driven models
	Two component model

	US meat production
	Basic structural time series model
	Adding a cycle component
	Quarterly data
	Further exploration

	Call center
	Building the model
	Seasonal variance extension

	Regression with ARMA errors
	Regression model in TSL
	Regression model with ARMA(p,q) errors

	Smooth trend
	Integrated Random Walk

	Electricity consumption
	Local level model
	Daily seasonal with a period of 24
	Weekday seasonal with a period of 168
	Annual seasonal with a period of 8766

	Appendices
	Dynamic models
	State Space models
	Score-driven models
	Submodels of score-driven models
	The ARMA model
	The GARCH model

	Bibliography

