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Abstract

A new class of time series models, developed by Harvey and Kattuman (2020), is designed
to predict variables which when cumulated are subject to an unknown saturation level.
Such models are relevant for many disciplines, but the applications here are for deaths
from coronavirus. When numbers are small a score-driven Negative Binomial model can
be used. It is shown how such models can be estimated with the Time Series Lab - Score
Edition software package and their specification assessed by statistical tests and graphics.
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1 Introduction
Following earlier work by Harvey (1984), Harvey and Kattuman (2020) develop time series mod-
els for predicting future values of a variable which when cumulated is subject to an unknown
saturation level. Such models are relevant for many disciplines, but the examples here are in
epidemiology and concern coronavirus.

The generalized logistic class of growth curves contains the logistic and Gompertz as special
cases; see, for example, Panik (2014) and Daley and Gani (2001). They lead to a model in which
the increase, yt, at time t depends on the cumulative total Yt. Specifically

ln yt = ρ ln Yt−1 + δ − γt+ εt, ρ ≥ 1, γ > 0, t = 2, . . . , T, (1)

where yt = Yt − Yt−1 and εt is a serially independent Gaussian disturbance with mean zero and
constant variance, σ2

ε , that is εt ∼ NID(0, σ2
ε). The cumulative number follows a logistic curve

when ρ = 2 and a Gompertz when ρ = 1. Estimation is by OLS. Additional flexibility can be
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introduced into the model by letting the deterministic trend be time-varying. Thus

ln yt = ρ ln Yt−1 + δt + εt, t = 2, ..., T,

where
δt = δt−1 − γt−1 + ηt, ηt ∼ NID(0, σ2

η),
γt = γt−1 + ζt, ζt ∼ NID(0, σ2

ζ ),
(2)

and the normally distributed irregular, level and slope disturbances, εt, ηt and ζt, respectively,
are mutually independent. When σ2

η = σ2
ζ = 0, the trend is deterministic, that is δt = δ − γt

with δ = δ0. When only σ2
ζ is zero, the slope is fixed and the trend reduces to a random walk

with drift. On the other hand, allowing σ2
ζ to be positive, but setting σ2

η = 0 gives an integrated
random walk (IRW) trend, which when estimated tends to be relatively smooth. Such a model
can be handled using the STAMP package.

The Kalman filter can be by-passed by adopting the reduced form, which comes from the
innovations form of the Kalman filter so that

ln yt = ρ ln Yt−1 + δtpt−1 + εt, t = 3, ..., T, (3)

where

δt+1pt = δtpt−1 − γtpt−1 + α1εt

γt+1pt = γtpt−1 + α2εt,

where α1 and α2 are non-negative parameters. Unless ρ is fixed, it may be hard to estimate in
small samples. Restrictions on the trend, such as setting α1 = 0, may also be prudent.

2 Small numbers: the negative binomial distribution
When yt is small, it may be necessary to adopt a discrete distribution, particularly if some
observations are zero. The best choice is the negative binomial which, when parameterized in
terms of a time-varying mean, ξtpt−1, and a fixed positive shape parameter, υ, has probability
mass function (PMF)

p(yt) = Γ(υ + yt)
yt! Γ(υ) ξyt

tpt−1(υ + ξtpt−1)−yt(1 + ξtpt−1/υ)−υ, yt = 0, 1, 2, . . . ,
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with V art−1(yt) = ξtpt−1 + ξ2
tpt−1/υ. An exponential link function ensures that ξtpt−1 remains

positive and at the same time yields an equation similar to (1):

ln ξtpt−1 = ρ ln Yt−1 + δ − γt, ρ ≥ 1, t = 3, ..., T. (4)

A stochastic trend may be introduced into the model as in (3). The conditional score frame-
work of Creal et al. (2013) and Harvey (2013) suggests

ln ξtpt−1 = ρ ln Yt−1 + δtpt−1, t = 3, ..., T, (5)

where

δt+1pt = δtpt−1 − γtpt−1

γt+1pt = γtpt−1 + αut, α ≥ 0,

but with ut = yt/ξtpt−1 − 1, which is the conditional score for ln ξtpt−1, that is υ(yt − ξtpt−1)/(υ+
ξtpt−1), divided by the information quantity. The dynamic Gompertz model has ρ = 1.

Predictions of future observations and the saturation level can be obtained from the recursions

ŷT+`|T = µ̂ρT+`−1|T exp(δT ) exp(−γ`)
µ̂T+`|T = µ̂T+`−1|T + ŷT+`|T , ` = 1, 2, . . . (6)

where δT is the level at time T and µ̂T |T = YT .

3 Germany
The negative binomial model, (4), with ρ set to one, was estimated using data, including some
zeroes, from1 March 11th 2020 up to, and including, May 6th. The result was α̃ = 0 - corre-
sponding to a deterministic trend - and γ̃ = 0.071. The fit and the ACF of the scores are shown
in Figure 1. Including the daily (seasonal) effect produces the fit in Figure 2; the α coefficient
is estimated close to zero and can be fixed at zero to constrain the effect to be deterministic.
As might be expected from the excellent fit, the log-likelihood is significantly increased. With
the daily seasonal included, the likelihood increases from -278.88 to -267.95. The parameter
estimates are γ̃ = 0.070, δ̃T = −4.14 and υ̃ = 13.25. The final total is predicted to be 8714.
Further estimation details are given in the appendix.

1The data is given on the ECDC website.
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Figure 1
German deaths with score-driven Negbin model
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Figure 2
German deaths with Negbin and a daily effect
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4 Sweden
Our series for deaths in Sweden starts on March 13th and ends on May 9th. There are zeroes near
the beginning and the numbers are smaller than those in Germany. Again the trend α effectively
is equal to zero. Including the daily effect is essential and as can be seen from Figure 3, the fit
is again very good. The parameter estimates are γ̃ = 0.061, δ̃T = −4.05 and υ̃ = 4.80. The
values of γ̃ are δ̃T are similar in magnitude to those reported for Germany. Further estimation
details are given in the appendix. The final total is predicted to be 4188. Given the much
higher population of Germany this is relatively high and it could be ascribed to the less stringent
lockdown in Sweden. However, it is not out of line with other countries2 like Italy and UK.

Figure 3
Deaths in Sweden and Negbin model
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2‘Swedes, especially of the older generation, have a genetic disposition to social distancing anyway.’ [Former
Swedish PM]
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Time Series Lab output Germany
Time Series Lab - Score Edition 1.10, Copyright c© 2019-2020 Nlitn

Session started at 2020-05-15 15:48

——————————————— MODEL DESCRIPTION ———————————————âĂŤ

Database
Model number: TSL001
The database used is: C:/...
The selection sample is: 1 - 57 (N = 1, T = 57 with 0 missings)

Distribution
The dependent variable is DGerDeath
The selected distribution is the Negative Binomial distribution with parameters:

Parameters Symbol Time-varying Domain
Mean λ Yes > 0
Dispersion r No > 0
Parameter specification
λ = exp(Level + Seasonal(7) + Xβ + Score(1))
r = constant

Explanatory variables
Explanatory variable for location is: LGerDeaths 1

Initialisation of intensity
Initialisation component: Level
Type of initialisation: Estimate

—————————————— PARAMETER OPTIMIZATION ——————————————

Parameter starting values:

Parameter type Value Free/Fix
Log intensity: IRW κ 0.0200 Free
Log intensity: init 4.8098 Free
Log intensity: init slope 0.0000 Free
Log intensity: seasonal κ 0.0000 Fixed
Log intensity: init seasonal 1 0.0000 Free
Log intensity: init seasonal 2 0.0000 Free
Log intensity: init seasonal 3 0.0000 Free
Log intensity: init seasonal 4 0.0000 Free
Log intensity: init seasonal 5 0.0000 Free
Log intensity: init seasonal 6 0.0000 Free
Log intensity: β LGerDeaths 1 1.0000 Fixed
Dispersion 5.0000 Free
Start estimation
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it0 f= -30.92671843
it10 f= -5.40858290
it20 f= -4.93143812
it30 f= -4.77494383
it40 f= -4.71288976
it50 f= -4.70105712
it58 f= -4.70103452
Strong convergence using numerical derivatives
Log-likelihood = -267.958968; T = 57

Optimized parameter values:

Parameter type Value Free/Fix
Log intensity: IRW κ 1.2477e-08 Free
Log intensity: init -0.2255 Free
Log intensity: init slope -0.0700 Free
Log intensity: seasonal κ 0.0000 Fixed
Log intensity: init seasonal 1 0.1985 Free
Log intensity: init seasonal 2 0.1362 Free
Log intensity: init seasonal 3 0.3596 Free
Log intensity: init seasonal 4 -0.1108 Free
Log intensity: init seasonal 5 -0.1568 Free
Log intensity: init seasonal 6 -0.4515 Free
Log intensity: β LGerDeaths 1 1.0000 Fixed
Dispersion 13.2604 Free
Estimation process completed in 1.4288 seconds

——————————————— STATE INFORMATION ———————————————âĂŤ

Component intensity Initial Time T
Mean 1.9468 132.1634
Composite signal 0.6662 4.8840
Integrated random walk -0.2255 -4.1437
Slope -0.0700 -0.0700
Seasonal 0.1985 0.1985
Xβ 0.6931 8.8292
————————————————âĂŤ DIAGNOSTICS —————————————————

Summary statistics for residuals and score:

Statistic Residuals Pearson Score
Observations 57.000 57.000 57.000
Obs no nan 57.000 57.000 57.000
Mean 0.232 -0.028 -0.031
Variance 683.856 1.578 0.290
Median -0.634 -0.014 -0.004
Minimum -55.980 -2.315 -1.000
Maximum 75.269 6.208 2.788
Skewness 0.129 1.881 2.085
Kurtosis 0.384 8.656 11.331
Test for autocorrelation:

Durbin-Watson
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Lag Score Pearson Critical value
1 2.278 2.362 1.50 - 2.50

Ljung-Box
Lag Score Pearson Critical value

3 2.294 2.880 3.841
4 2.741 2.958 5.991
5 3.302 4.992 7.815
6 3.661 5.233 9.488
7 4.325 5.456 11.070
8 5.262 7.582 12.592
9 8.253 8.491 14.067

10 8.404 8.659 15.507
11 8.440 8.664 16.919
12 8.868 9.217 18.307
13 8.870 9.217 19.675
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Time Series Lab output Sweden
Time Series Lab - Score Edition 1.10, Copyright c© 2019-2020 Nlitn

Session started at 2020-05-15 15:48

——————————————— MODEL DESCRIPTION ———————————————âĂŤ

Database
Model number: TSL002
The database used is: C:/...
The selection sample is: 1 - 58 (N = 1, T = 58 with 0 missings)

Distribution
The dependent variable is DSweDeath
The selected distribution is the Negative Binomial distribution with parameters:

Parameters Symbol Time-varying Domain
Mean λ Yes > 0
Dispersion r No > 0
Parameter specification
λ = exp(Level + Seasonal(7) + Xβ + Score(1))
r = constant

Explanatory variables
Explanatory variable for location is: LSweDeath 1

Initialisation of intensity
Initialisation component: Level
Type of initialisation: Estimate

—————————————— PARAMETER OPTIMIZATION ——————————————

Parameter starting values:

Parameter type Value Free/Fix
Log intensity: IRW κ 0.0200 Free
Log intensity: init 4.0023 Free
Log intensity: init slope 0.0000 Free
Log intensity: seasonal κ 0.0000 Fixed
Log intensity: init seasonal 1 0.0000 Free
Log intensity: init seasonal 2 0.0000 Free
Log intensity: init seasonal 3 0.0000 Free
Log intensity: init seasonal 4 0.0000 Free
Log intensity: init seasonal 5 0.0000 Free
Log intensity: init seasonal 6 0.0000 Free
Log intensity: β LSweDeath 1 1.0000 Fixed
Dispersion 5.0000 Free
Start estimation
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it0 f= -25.99268241
it10 f= -4.35338492
it20 f= -4.17788034
it30 f= -4.08485481
it40 f= -4.07737987
it50 f= -4.07557205
it60 f= -4.07555992
it64 f= -4.07555988
Strong convergence using numerical derivatives
Log-likelihood = -236.382473; T = 58

Optimized parameter values:

Parameter type Value Free/Fix
Log intensity: IRW κ 1.3142e-07 Free
Log intensity: init -0.5833 Free
Log intensity: init slope -0.0607 Free
Log intensity: seasonal κ 0.0000 Fixed
Log intensity: init seasonal 1 0.3624 Free
Log intensity: init seasonal 2 0.3370 Free
Log intensity: init seasonal 3 -0.4809 Free
Log intensity: init seasonal 4 -1.2662 Free
Log intensity: init seasonal 5 0.1173 Free
Log intensity: init seasonal 6 0.4528 Free
Log intensity: β LSweDeath 1 1.0000 Fixed
Dispersion 4.7952 Free
Estimation process completed in 1.5124 seconds

——————————————— STATE INFORMATION ———————————————âĂŤ

Component intensity Initial Time T
Mean 0.8018 74.5765
Composite signal -0.2209 4.3118
Integrated random walk -0.5833 -4.0448
Slope -0.0607 -0.0607
Seasonal 0.3624 0.3370
Xβ 0.0000 8.0196
————————————————âĂŤ DIAGNOSTICS —————————————————

Summary statistics for residuals and score:

Statistic Residuals Pearson Score
Observations 58.000 58.000 58.000
Obs no nan 58.000 58.000 58.000
Mean 0.531 0.050 0.198
Variance 610.383 1.302 3.770
Median -0.725 -0.127 -0.060
Minimum -60.800 -1.810 -1.000
Maximum 62.816 5.092 14.254
Skewness 0.261 1.554 6.519
Kurtosis 0.975 4.771 44.376
Test for autocorrelation:
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Durbin-Watson
Lag Score Pearson Critical value

1 1.874 1.606 1.50 - 2.50

Ljung-Box
Lag Score Pearson Critical value

3 2.202 4.181 3.841
4 2.490 5.094 5.991
5 2.516 5.481 7.815
6 2.559 5.992 9.488
7 2.662 7.504 11.070
8 2.768 9.383 12.592
9 2.768 9.409 14.067

10 2.856 9.763 15.507
11 2.974 9.847 16.919
12 2.976 9.903 18.307
13 2.997 9.983 19.675
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Time Series Lab - Screen Shots
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